{"title":"TRENDS IN THE DEVELOPMENT OF REACTIVE FIRE PROTECTION (LITERATURE REVIEW)","authors":"L. Vakhitova, N. Taran, Konstantin Kalafat","doi":"10.31474/1999-981x-2021-1-75-90","DOIUrl":null,"url":null,"abstract":"Purpose. Identification of the main directions of evolution of scientific researches concerning development and improvement of fire protective reactive coatings of intumescent type for steel constructions. Methods. Analysis of literature sources, study and generalization of information, classification and modeling of chemical processes. Results. As a result of the performed researches it has been shown that of all the developed reactive fire protection systems for increasing the fire resistance of steel structures the intumescent composition of ammonium polyphosphate/ pentaerythritol / melamine / polymer is the most widespread and economically justified. To reduce the cost of fire protection measures, it is necessary to improve the coatings of the intumescent type in the following main areas: increasing of fire protection efficiency with a decrease in the thickness of the fire protection layer; prolongation of life time with strengthening of resistance to external factors; reducing the cost of the prescription composition of intumescent paint due to the use of nanomaterials. Scientific novelty. It has been established that nanoclays, nanooxides of metals and silicon, LDH compounds and their analogues should be considered the most promising and multifunctional. The presence of nanomaterials in intumescent compositions allows to increase the environmental parameters of fire-retardant treatment due to the rejection of halogen flame retardants, boron compounds, formaldehyde resins. In addition, the presence of nanocompounds in intumescent coatings significantly reduces smoke in fire. Practical significance. The conclusions obtained from the literature review are of practical importance for the development of new approaches to the design of fire-fighting materials with improved performance through the use of nanomaterials, which provides a strong fire retardant foam char layer and provides rigidity of the insulation frame.","PeriodicalId":344647,"journal":{"name":"JOURNAL of Donetsk mining institute","volume":" 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL of Donetsk mining institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31474/1999-981x-2021-1-75-90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose. Identification of the main directions of evolution of scientific researches concerning development and improvement of fire protective reactive coatings of intumescent type for steel constructions. Methods. Analysis of literature sources, study and generalization of information, classification and modeling of chemical processes. Results. As a result of the performed researches it has been shown that of all the developed reactive fire protection systems for increasing the fire resistance of steel structures the intumescent composition of ammonium polyphosphate/ pentaerythritol / melamine / polymer is the most widespread and economically justified. To reduce the cost of fire protection measures, it is necessary to improve the coatings of the intumescent type in the following main areas: increasing of fire protection efficiency with a decrease in the thickness of the fire protection layer; prolongation of life time with strengthening of resistance to external factors; reducing the cost of the prescription composition of intumescent paint due to the use of nanomaterials. Scientific novelty. It has been established that nanoclays, nanooxides of metals and silicon, LDH compounds and their analogues should be considered the most promising and multifunctional. The presence of nanomaterials in intumescent compositions allows to increase the environmental parameters of fire-retardant treatment due to the rejection of halogen flame retardants, boron compounds, formaldehyde resins. In addition, the presence of nanocompounds in intumescent coatings significantly reduces smoke in fire. Practical significance. The conclusions obtained from the literature review are of practical importance for the development of new approaches to the design of fire-fighting materials with improved performance through the use of nanomaterials, which provides a strong fire retardant foam char layer and provides rigidity of the insulation frame.