Stochastic root finding for optimized certainty equivalents

Anna-Maria Hamm, T. Salfeld, Stefan Weber
{"title":"Stochastic root finding for optimized certainty equivalents","authors":"Anna-Maria Hamm, T. Salfeld, Stefan Weber","doi":"10.1109/WSC.2013.6721483","DOIUrl":null,"url":null,"abstract":"Global financial markets require suitable techniques for the quantification of the downside risk of financial positions. In the current paper, we concentrate on Monte Carlo methods for the estimation of an important and broad class of convex risk measures which can be constructed on the basis of optimized certainty equivalents (OCEs). This family of risk measures - originally introduced in Ben-Tal and Teboulle (2007) - includes, among others, the entropic risk measure and average value at risk. The calculation of OCEs involves a stochastic optimization problem that can be reduced to a stochastic root finding problem via a first order condition. We describe suitable algorithms and illustrate their properties in numerical case studies.","PeriodicalId":223717,"journal":{"name":"2013 Winter Simulations Conference (WSC)","volume":"19 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Winter Simulations Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2013.6721483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Global financial markets require suitable techniques for the quantification of the downside risk of financial positions. In the current paper, we concentrate on Monte Carlo methods for the estimation of an important and broad class of convex risk measures which can be constructed on the basis of optimized certainty equivalents (OCEs). This family of risk measures - originally introduced in Ben-Tal and Teboulle (2007) - includes, among others, the entropic risk measure and average value at risk. The calculation of OCEs involves a stochastic optimization problem that can be reduced to a stochastic root finding problem via a first order condition. We describe suitable algorithms and illustrate their properties in numerical case studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化确定性等价物的随机寻根
全球金融市场需要适当的技术来量化金融头寸的下行风险。在本文中,我们集中研究了蒙特卡罗方法,用于估计一类重要而广泛的凸风险度量,这些凸风险度量可以在优化确定性当量(OCEs)的基础上构造。这一系列的风险度量——最初由Ben-Tal和Teboulle(2007)提出——包括熵风险度量和风险平均值。微分方程的计算涉及一个随机优化问题,该问题可以通过一个一阶条件简化为一个随机寻根问题。我们描述了合适的算法,并在数值案例研究中说明了它们的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stochastic root finding for optimized certainty equivalents Uncertainty modeling and simulation of tool wear in mechanized tunneling The knowledge gradient algorithm using locally parametric approximations Emergence by strategy: Flocking boids and their fitness in relation to model complexity Time management in hierarchical federation using RTI-RTI interoperation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1