The knowledge gradient algorithm using locally parametric approximations

Bolong Cheng, A. Jamshidi, Warrren B Powell
{"title":"The knowledge gradient algorithm using locally parametric approximations","authors":"Bolong Cheng, A. Jamshidi, Warrren B Powell","doi":"10.1109/WSC.2013.6721477","DOIUrl":null,"url":null,"abstract":"We are interested in maximizing a general (but continuous) function where observations are noisy and may be expensive. We derive a knowledge gradient policy, which chooses measurements which maximize the expected value of information, while using a locally parametric belief model which uses linear approximations around regions of the function, known as clouds. The method, called DC-RBF (Dirichlet Clouds with Radial Basis Functions) is well suited to recursive estimation, and uses a compact representation of the function which avoids storing the entire history. Our technique allows for correlated beliefs within adjacent subsets of the alternatives and does not pose any a priori assumption on the global shape of the underlying function. Experimental work suggests that the method adapts to a range of arbitrary, continuous functions, and appears to reliably find the optimal solution.","PeriodicalId":223717,"journal":{"name":"2013 Winter Simulations Conference (WSC)","volume":"11 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Winter Simulations Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2013.6721477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We are interested in maximizing a general (but continuous) function where observations are noisy and may be expensive. We derive a knowledge gradient policy, which chooses measurements which maximize the expected value of information, while using a locally parametric belief model which uses linear approximations around regions of the function, known as clouds. The method, called DC-RBF (Dirichlet Clouds with Radial Basis Functions) is well suited to recursive estimation, and uses a compact representation of the function which avoids storing the entire history. Our technique allows for correlated beliefs within adjacent subsets of the alternatives and does not pose any a priori assumption on the global shape of the underlying function. Experimental work suggests that the method adapts to a range of arbitrary, continuous functions, and appears to reliably find the optimal solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部参数逼近的知识梯度算法
我们感兴趣的是最大化一个一般的(但连续的)函数,其中观察值是有噪声的,可能是昂贵的。我们推导了一种知识梯度策略,该策略选择最大化信息期望值的测量,同时使用局部参数信念模型,该模型在函数的区域(称为云)周围使用线性逼近。该方法被称为DC-RBF (Dirichlet Clouds with Radial Basis Functions),非常适合于递归估计,并且使用了函数的紧凑表示,避免了存储整个历史。我们的技术允许在相邻的备选子集中存在相关的信念,并且不会对潜在函数的全局形状提出任何先验假设。实验表明,该方法适用于任意范围的连续函数,并能可靠地找到最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stochastic root finding for optimized certainty equivalents Uncertainty modeling and simulation of tool wear in mechanized tunneling The knowledge gradient algorithm using locally parametric approximations Emergence by strategy: Flocking boids and their fitness in relation to model complexity Time management in hierarchical federation using RTI-RTI interoperation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1