Optimal Load Sharing in Reconfigurable Battery Systems using an Improved Model Predictive Control Method

Godwin K. Peprah, F. Liberati, F. Altaf, Gilbert Osei-Dadzie, A. Giorgio, A. Pietrabissa
{"title":"Optimal Load Sharing in Reconfigurable Battery Systems using an Improved Model Predictive Control Method","authors":"Godwin K. Peprah, F. Liberati, F. Altaf, Gilbert Osei-Dadzie, A. Giorgio, A. Pietrabissa","doi":"10.1109/MED51440.2021.9480237","DOIUrl":null,"url":null,"abstract":"Optimal load sharing through balancing has the potential of increasing the lifetime and capacity of the lithiumion battery. This paper presents a model predictive control (MPC) approach for optimal load sharing for lithium-ion multi-battery systems in electric vehicles. The primary objective is the satisfaction of the motoring or regenerative load power demand. Secondary objectives are state of charge (SoC) and temperature balancing amongst battery units. An advanced electro-thermal model which includes a two-state thermal model is used, which leads to better performance in terms of temperature balancing and control. The proposed MPC controller, which reduces battery degradation, is validated through simulations under the urban dynamometer driving schedule. The results showed satisfactory power tracking, and SoC and temperature balancing.","PeriodicalId":322615,"journal":{"name":"2021 29th Mediterranean Conference on Control and Automation (MED)","volume":"2 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 29th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED51440.2021.9480237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optimal load sharing through balancing has the potential of increasing the lifetime and capacity of the lithiumion battery. This paper presents a model predictive control (MPC) approach for optimal load sharing for lithium-ion multi-battery systems in electric vehicles. The primary objective is the satisfaction of the motoring or regenerative load power demand. Secondary objectives are state of charge (SoC) and temperature balancing amongst battery units. An advanced electro-thermal model which includes a two-state thermal model is used, which leads to better performance in terms of temperature balancing and control. The proposed MPC controller, which reduces battery degradation, is validated through simulations under the urban dynamometer driving schedule. The results showed satisfactory power tracking, and SoC and temperature balancing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进模型预测控制方法的可重构电池系统最优负荷分担
通过平衡优化负载分担具有提高锂离子电池寿命和容量的潜力。针对电动汽车锂离子多电池系统的最优负荷分担问题,提出了一种模型预测控制方法。主要目标是满足电机或再生负载的电力需求。次要目标是电池单元之间的充电状态(SoC)和温度平衡。采用了先进的电热模型,包括双态热模型,在温度平衡和控制方面具有更好的性能。通过城市测功机行驶工况下的仿真验证了所提出的MPC控制器降低了电池退化的有效性。结果表明,该系统具有良好的功率跟踪、SoC和温度平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Load Sharing in Reconfigurable Battery Systems using an Improved Model Predictive Control Method Maximum Hands-Off Control for a Class of Nonlinear Systems Sparse Grid Regression for Interpretation of Black Box Functions The improvement of the clinical decision-making through the Business Intelligence A Hybrid Source Seeking Algorithm in Unknown Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1