A Hybrid Source Seeking Algorithm in Unknown Environments

M. Linden, Suad Krilasevic, Sergio Grammatico
{"title":"A Hybrid Source Seeking Algorithm in Unknown Environments","authors":"M. Linden, Suad Krilasevic, Sergio Grammatico","doi":"10.1109/MED51440.2021.9480267","DOIUrl":null,"url":null,"abstract":"In this paper, we present a hybrid adaptive feedback (HAF) obstacle-avoidance algorithm for source seeking applications that overcomes the obstacle-avoidance problem, as defined in [1], when using artificial potential functions (APF). Differently from [2], our algorithm does not require any knowledge on the location and orientation of the obstacle with respect to the source. Finally, we show via numerical simulations the effectiveness of our algorithm compared with the APF approach.","PeriodicalId":322615,"journal":{"name":"2021 29th Mediterranean Conference on Control and Automation (MED)","volume":"253 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 29th Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED51440.2021.9480267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a hybrid adaptive feedback (HAF) obstacle-avoidance algorithm for source seeking applications that overcomes the obstacle-avoidance problem, as defined in [1], when using artificial potential functions (APF). Differently from [2], our algorithm does not require any knowledge on the location and orientation of the obstacle with respect to the source. Finally, we show via numerical simulations the effectiveness of our algorithm compared with the APF approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
未知环境下的混合源搜索算法
在本文中,我们提出了一种混合自适应反馈(HAF)避障算法,用于克服[1]中定义的在使用人工势函数(APF)时的避障问题。与[2]不同的是,我们的算法不需要知道障碍物相对于源的位置和方向。最后,通过数值仿真与APF方法进行了比较,证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Load Sharing in Reconfigurable Battery Systems using an Improved Model Predictive Control Method Maximum Hands-Off Control for a Class of Nonlinear Systems Sparse Grid Regression for Interpretation of Black Box Functions The improvement of the clinical decision-making through the Business Intelligence A Hybrid Source Seeking Algorithm in Unknown Environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1