Instant and Accurate Instance Segmentation Equipped with Path Aggregation and Attention Gate

Seung Il Lee, Hyun Kim
{"title":"Instant and Accurate Instance Segmentation Equipped with Path Aggregation and Attention Gate","authors":"Seung Il Lee, Hyun Kim","doi":"10.1109/ISOCC50952.2020.9332981","DOIUrl":null,"url":null,"abstract":"With the development of GPU and deep learning, there has been great advances in the field of object detection and segmentation. Instance segmentation is one of the most important tasks used in many areas including autonomous vehicles and video surveillance because such areas require both high frames per second (FPS) and high accuracy. In this paper, we propose a method of attaching path aggregation network and attention gate based on real-time instance segmentation model, YOLACT, to increase the accuracy of instance segmentation. As a result of applying the proposed method to the YOLACT framework, the processing speed drops slightly by 2.7%, but the accuracy increases significantly up to 1.4AP, while still maintaining realtime processing of 32.6FPS.","PeriodicalId":270577,"journal":{"name":"2020 International SoC Design Conference (ISOCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC50952.2020.9332981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With the development of GPU and deep learning, there has been great advances in the field of object detection and segmentation. Instance segmentation is one of the most important tasks used in many areas including autonomous vehicles and video surveillance because such areas require both high frames per second (FPS) and high accuracy. In this paper, we propose a method of attaching path aggregation network and attention gate based on real-time instance segmentation model, YOLACT, to increase the accuracy of instance segmentation. As a result of applying the proposed method to the YOLACT framework, the processing speed drops slightly by 2.7%, but the accuracy increases significantly up to 1.4AP, while still maintaining realtime processing of 32.6FPS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于路径聚合和注意门的快速准确的实例分割
随着GPU和深度学习的发展,在目标检测和分割领域取得了很大的进步。实例分割是许多领域中最重要的任务之一,包括自动驾驶汽车和视频监控,因为这些领域需要高帧每秒(FPS)和高精度。本文提出了一种基于实时实例分割模型(YOLACT)附加路径聚合网络和注意门的方法,以提高实例分割的精度。将该方法应用于YOLACT框架后,处理速度略有下降2.7%,但精度显著提高,达到1.4AP,同时仍保持32.6FPS的实时处理速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Quadcopters Flight Simulation Considering the Influence of Wind Design of a CMOS Current-mode Squaring Circuit for Training Analog Neural Networks Instant and Accurate Instance Segmentation Equipped with Path Aggregation and Attention Gate 13.56 MHz High-Efficiency Power Transmitter and Receiver for Wirelessly Powered Biomedical Implants Investigation on Synaptic Characteristics of Interfacial Phase Change Memory for Artificial Synapse Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1