R2poweR: The Proof-of-Concept of a Backdrivable, High-Ratio Gearbox for Human-Robot Collaboration*

Pablo López-García, Stein Crispel, A. Varadharajan, Elias Saerens, T. Verstraten, B. Vanderborght, D. Lefeber
{"title":"R2poweR: The Proof-of-Concept of a Backdrivable, High-Ratio Gearbox for Human-Robot Collaboration*","authors":"Pablo López-García, Stein Crispel, A. Varadharajan, Elias Saerens, T. Verstraten, B. Vanderborght, D. Lefeber","doi":"10.1109/icra46639.2022.9811923","DOIUrl":null,"url":null,"abstract":"Robotic engineers face major challenges to solve the complex actuation needs of Human-Robot Collaboration with existing act robotic gearboxes. Available technologies comprise high-ratio Planetary Gearheads, Cycloid Drives and Harmonic Drives, inherited from conventional industrial robotics. Alternative approaches include Direct-Drive and Quasi Direct-Drive actuation strategies, which propose to cancel or substantially reduce gear ratio, in order to minimize reflected inertia and attain enough backdrivability for collaborative tasks. This paper presents the proof-of-concept validation of a novel high-ratio, Wolfrom-based, gearbox technology that follows a different approach to attain the same objective. Testing five different gearbox prototypes, we confirm the ability of the R2poweR technology to improve efficiency and backdrivability while retaining the weight and control advantages derived from the use of high reduction ratios. The result is a highly efficient, backdrivable, high-ratio gearbox with exciting Huma-Robot Collaboration potential.","PeriodicalId":341244,"journal":{"name":"2022 International Conference on Robotics and Automation (ICRA)","volume":"70 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9811923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Robotic engineers face major challenges to solve the complex actuation needs of Human-Robot Collaboration with existing act robotic gearboxes. Available technologies comprise high-ratio Planetary Gearheads, Cycloid Drives and Harmonic Drives, inherited from conventional industrial robotics. Alternative approaches include Direct-Drive and Quasi Direct-Drive actuation strategies, which propose to cancel or substantially reduce gear ratio, in order to minimize reflected inertia and attain enough backdrivability for collaborative tasks. This paper presents the proof-of-concept validation of a novel high-ratio, Wolfrom-based, gearbox technology that follows a different approach to attain the same objective. Testing five different gearbox prototypes, we confirm the ability of the R2poweR technology to improve efficiency and backdrivability while retaining the weight and control advantages derived from the use of high reduction ratios. The result is a highly efficient, backdrivable, high-ratio gearbox with exciting Huma-Robot Collaboration potential.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
R2poweR:用于人机协作的反向驱动、高传动比变速箱的概念验证*
机器人工程师面临的主要挑战是如何利用现有的动作机器人齿轮箱来解决人机协作的复杂驱动需求。现有的技术包括高比率行星齿轮箱,摆线传动和谐波传动,从传统的工业机器人继承。替代方法包括直接驱动和准直接驱动驱动策略,它们建议取消或大幅降低传动比,以最大限度地减少反射惯性,并获得足够的反向驾驶能力来执行协作任务。本文介绍了一种基于wolfrom的新型高比率变速箱技术的概念验证,该技术采用不同的方法来实现相同的目标。通过测试五种不同的变速箱原型,我们证实了R2poweR技术在提高效率和反驾驶性能的同时,保留了高减速比带来的重量和控制优势。其结果是一个高效率、可反向驱动、高传动比的变速箱,具有令人兴奋的人-机器人协作潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Can your drone touch? Exploring the boundaries of consumer-grade multirotors for physical interaction Underwater Dock Detection through Convolutional Neural Networks Trained with Artificial Image Generation Immersive Virtual Walking System Using an Avatar Robot R2poweR: The Proof-of-Concept of a Backdrivable, High-Ratio Gearbox for Human-Robot Collaboration* Cityscapes TL++: Semantic Traffic Light Annotations for the Cityscapes Dataset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1