L. Brusberg, D. Manessis, M. Neitz, Beatrice Schild, H. Schroder, T. Tekin, K. Lang
{"title":"Development of an electro-optical circuit board technology with embedded single-mode glass waveguide layer","authors":"L. Brusberg, D. Manessis, M. Neitz, Beatrice Schild, H. Schroder, T. Tekin, K. Lang","doi":"10.1109/ESTC.2014.6962733","DOIUrl":null,"url":null,"abstract":"The goal of our research is the development of a single-mode electro-optical circuit board, the single-mode board-to-board pluggable connector and the single-mode chip-to-board coupling interface to silicon photonic devices. In this paper, the single-mode glass waveguide process is presented based on thermal silver ion-exchange for fabrication of low loss glass waveguide panels that will be developed for embedding as core layer of such printed circuit board. The single-mode glass waveguides (SM-WGs) were fabricated on 150 mm wafer size for characterization of different embedding scenarios. In the best case the measured propagation loss before and after lamination is below 0.1 dB/cm (λ=1550 nm). A suitable glass waveguide layer and embedding process was developed that can be applied for single-mode electro-optical circuit board fabrication.","PeriodicalId":299981,"journal":{"name":"Proceedings of the 5th Electronics System-integration Technology Conference (ESTC)","volume":"222 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Electronics System-integration Technology Conference (ESTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTC.2014.6962733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
The goal of our research is the development of a single-mode electro-optical circuit board, the single-mode board-to-board pluggable connector and the single-mode chip-to-board coupling interface to silicon photonic devices. In this paper, the single-mode glass waveguide process is presented based on thermal silver ion-exchange for fabrication of low loss glass waveguide panels that will be developed for embedding as core layer of such printed circuit board. The single-mode glass waveguides (SM-WGs) were fabricated on 150 mm wafer size for characterization of different embedding scenarios. In the best case the measured propagation loss before and after lamination is below 0.1 dB/cm (λ=1550 nm). A suitable glass waveguide layer and embedding process was developed that can be applied for single-mode electro-optical circuit board fabrication.