Detection of Malicious Social Bots with the Aid of Learning Automata on Twitter

Swati Vashisht, Sushil Kumar Gupta, Atul Fegade, S. Dhondiyal, Rohit Kumar, G. Revathy
{"title":"Detection of Malicious Social Bots with the Aid of Learning Automata on Twitter","authors":"Swati Vashisht, Sushil Kumar Gupta, Atul Fegade, S. Dhondiyal, Rohit Kumar, G. Revathy","doi":"10.1109/IC3I56241.2022.10073346","DOIUrl":null,"url":null,"abstract":"Violent social bots automate social interactions, create fictitious profiles to spread destructive propaganda, or assume the identities of followers to make misleading tweets. Furthermore, malicious social bots disseminate malicious root URLs, which reroute requests from online social media agents to certain malicious servers. Therefore, one of the most crucial jobs of the Twitter network is to distinguish between actual drug users and active social bots. Instead of taking as long to remove as social graph-based features, URL-based features can identify the cruel conduct of social bots. It’s difficult for malicious social bots to change URL redirect chains. This part offers a literacy automaton-grounded vicious social bot discovery (LA-MSBD) for safe (drug) agents on the Twitter network by fusing URL-based functionality with a trust computation model. The research discussed in this paper focuses on designing, utilizing, and evaluating robotic sensors based on deep literacy models rather than adding metadata about position or birthpoint counting. This paper also demonstrates how deep literacy models can compete with conventional machine-ability idioms. The findings of this study demonstrate that in-depth comprehension models can be made more complex by utilizing pre-trained models.","PeriodicalId":274660,"journal":{"name":"2022 5th International Conference on Contemporary Computing and Informatics (IC3I)","volume":"69 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Contemporary Computing and Informatics (IC3I)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3I56241.2022.10073346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Violent social bots automate social interactions, create fictitious profiles to spread destructive propaganda, or assume the identities of followers to make misleading tweets. Furthermore, malicious social bots disseminate malicious root URLs, which reroute requests from online social media agents to certain malicious servers. Therefore, one of the most crucial jobs of the Twitter network is to distinguish between actual drug users and active social bots. Instead of taking as long to remove as social graph-based features, URL-based features can identify the cruel conduct of social bots. It’s difficult for malicious social bots to change URL redirect chains. This part offers a literacy automaton-grounded vicious social bot discovery (LA-MSBD) for safe (drug) agents on the Twitter network by fusing URL-based functionality with a trust computation model. The research discussed in this paper focuses on designing, utilizing, and evaluating robotic sensors based on deep literacy models rather than adding metadata about position or birthpoint counting. This paper also demonstrates how deep literacy models can compete with conventional machine-ability idioms. The findings of this study demonstrate that in-depth comprehension models can be made more complex by utilizing pre-trained models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
借助Twitter上的学习自动机检测恶意社交机器人
暴力社交机器人自动进行社交互动,创建虚构的个人资料来传播破坏性的宣传,或者以粉丝的身份发布误导性的推文。此外,恶意社交机器人传播恶意根url,将来自在线社交媒体代理的请求重新路由到某些恶意服务器。因此,Twitter网络最重要的工作之一就是区分真正的吸毒者和活跃的社交机器人。基于url的功能可以识别出社交机器人的残忍行为,而不是像删除基于社交图表的功能那样花很长时间。恶意社交机器人很难改变URL重定向链。这一部分通过将基于url的功能与信任计算模型融合,为Twitter网络上的安全(药物)代理提供了一个基于读写自动机的恶意社交机器人发现(LA-MSBD)。本文讨论的研究侧重于基于深度读写模型的机器人传感器的设计、利用和评估,而不是添加关于位置或出生点计数的元数据。本文还演示了深度读写模型如何与传统的机器能力习语竞争。本研究的结果表明,利用预训练模型可以使深度理解模型变得更加复杂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of Learning Management System for Evaluating Students’ progress in Learning Environment Detection of Malicious Social Bots with the Aid of Learning Automata on Twitter Review of Psychiatric Disorders in relation with Sleep Disturbances and the proposal of a Prediction System Fully Automated Clustering based Blueprint for Image Analysis A Brief Review of State-of-the-art Routing Methods in Wireless Sensor Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1