An Improved Deep Multiple-input and Single-output PointNet for 3D Model Retrieval

Junwen Tong, Jiabao Zhao, Jiaoyang Jin, Weisong Qiao, Haitong Li
{"title":"An Improved Deep Multiple-input and Single-output PointNet for 3D Model Retrieval","authors":"Junwen Tong, Jiabao Zhao, Jiaoyang Jin, Weisong Qiao, Haitong Li","doi":"10.1109/ICNSC48988.2020.9238062","DOIUrl":null,"url":null,"abstract":"PointNet extracts global shape features from the unordered point sets directly, respecting the permutation invariance of the input points; however, it fails to capture the fine-grained local shape features. In this paper, we extend PointNet to a multi-input and single-output structure by additionally feeding the scale-invariant heat kernel signature into PointNet to capture the fine-grained local shape features. To diversify the training data, we resample the points of each model randomly and generate a set of sub-samples, based on which PointNet calculates their classification scores. Then we adopt a plurality voting strategy to fuse the sub-sample level feature vectors to a model level descriptor, according to their classification scores. The experimental results demonstrate our proposed method outperforms the state-of-the-art retrieval methods on two 3D model benchmarks.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"35 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

PointNet extracts global shape features from the unordered point sets directly, respecting the permutation invariance of the input points; however, it fails to capture the fine-grained local shape features. In this paper, we extend PointNet to a multi-input and single-output structure by additionally feeding the scale-invariant heat kernel signature into PointNet to capture the fine-grained local shape features. To diversify the training data, we resample the points of each model randomly and generate a set of sub-samples, based on which PointNet calculates their classification scores. Then we adopt a plurality voting strategy to fuse the sub-sample level feature vectors to a model level descriptor, according to their classification scores. The experimental results demonstrate our proposed method outperforms the state-of-the-art retrieval methods on two 3D model benchmarks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于三维模型检索的改进深度多输入单输出点网
PointNet在尊重输入点的排列不变性的前提下,直接从无序点集中提取全局形状特征;但是,它无法捕获细粒度的局部形状特征。在本文中,我们通过在PointNet中加入尺度不变的热核特征来捕获细粒度的局部形状特征,从而将PointNet扩展到多输入单输出结构。为了使训练数据多样化,我们随机重新采样每个模型的点并生成一组子样本,PointNet根据这些子样本计算它们的分类分数。然后,我们采用多元投票策略,根据子样本级特征向量的分类分数,将其融合到模型级描述符中。实验结果表明,本文提出的方法在两个三维模型基准上优于当前最先进的检索方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Deep Multiple-input and Single-output PointNet for 3D Model Retrieval A Reinforcement Learning Based Medium Access Control Method for LoRa Networks A Novel Reinforcement-Learning-Based Approach to Scientific Workflow Scheduling Accelerated Latent Factor Analysis for Recommender Systems via PID Controller A Diverse Biases Non-negative Latent Factorization of Tensors Model for Dynamic Network Link Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1