Accelerated Latent Factor Analysis for Recommender Systems via PID Controller

Jinli Li, Xuke Wu, Ye Yuan, Yajuan Wu, Kangkang Ma, Yue Zhou
{"title":"Accelerated Latent Factor Analysis for Recommender Systems via PID Controller","authors":"Jinli Li, Xuke Wu, Ye Yuan, Yajuan Wu, Kangkang Ma, Yue Zhou","doi":"10.1109/ICNSC48988.2020.9238055","DOIUrl":null,"url":null,"abstract":"High-dimensional and sparse (HiDS) matrices generated by recommender systems (RSs) contain rich knowledge. A latent factor (LF) model can address such data effectively. Stochastic gradient descent (SGD) is an efficient algorithm for building a LF model on an HiDS matrix. However, it suffers slow convergence. To address this issue, this study proposes to implement a LF model with a proportional integral derivative (PID) controller. The main idea is to continuously apply a correction for SGD to accelerate the training process. Based on such design, a PID-based LF (PLF) model is proposed. Empirical studies on two HiDS matrices from RSs indicate that a PLF model outperforms an LF model in terms of both convergence rate and prediction accuracy for missing data.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

High-dimensional and sparse (HiDS) matrices generated by recommender systems (RSs) contain rich knowledge. A latent factor (LF) model can address such data effectively. Stochastic gradient descent (SGD) is an efficient algorithm for building a LF model on an HiDS matrix. However, it suffers slow convergence. To address this issue, this study proposes to implement a LF model with a proportional integral derivative (PID) controller. The main idea is to continuously apply a correction for SGD to accelerate the training process. Based on such design, a PID-based LF (PLF) model is proposed. Empirical studies on two HiDS matrices from RSs indicate that a PLF model outperforms an LF model in terms of both convergence rate and prediction accuracy for missing data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PID控制器的推荐系统加速潜在因素分析
由推荐系统生成的高维稀疏矩阵包含丰富的知识。潜在因素(LF)模型可以有效地处理这类数据。随机梯度下降法(SGD)是在HiDS矩阵上建立LF模型的有效算法。然而,它的收敛速度很慢。为了解决这个问题,本研究提出使用比例积分导数(PID)控制器来实现LF模型。其主要思想是不断地应用SGD校正来加速训练过程。在此基础上,提出了一种基于pid的LF (PLF)模型。对RSs中两个HiDS矩阵的实证研究表明,PLF模型在缺失数据的收敛速度和预测精度方面都优于LF模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Deep Multiple-input and Single-output PointNet for 3D Model Retrieval A Reinforcement Learning Based Medium Access Control Method for LoRa Networks A Novel Reinforcement-Learning-Based Approach to Scientific Workflow Scheduling Accelerated Latent Factor Analysis for Recommender Systems via PID Controller A Diverse Biases Non-negative Latent Factorization of Tensors Model for Dynamic Network Link Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1