A Diverse Biases Non-negative Latent Factorization of Tensors Model for Dynamic Network Link Prediction

Xuke Wu, Hang Gou, Hao Wu, Juan Wang, Minzhi Chen, S. Lai
{"title":"A Diverse Biases Non-negative Latent Factorization of Tensors Model for Dynamic Network Link Prediction","authors":"Xuke Wu, Hang Gou, Hao Wu, Juan Wang, Minzhi Chen, S. Lai","doi":"10.1109/ICNSC48988.2020.9238117","DOIUrl":null,"url":null,"abstract":"Dynamic networks vary over time, making it vital to capture networks temporal patterns for predicting missing links with high accuracy. A biased non-negative latent factorization of tensors (BNLFT) model is very effective in extracting such patterns from dynamic data. However, a BNLFT model only integrates single bias, which cannot adequately represents the volatility of the dynamic data. To address this issue, this paper presents a Diverse Biases Non-negative Latent Factorization of Tensors (DBNT) model for accurate prediction of missing links in dynamic networks. Meanwhile, for further prediction accuracy improvement, the preprocessing bias is integrated into the DBNT model. Empirical studies on two dynamic networks datasets from real applications show that compared with state of the art predictors, a DBNT model achieves higher prediction accuracy.","PeriodicalId":412290,"journal":{"name":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Networking, Sensing and Control (ICNSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNSC48988.2020.9238117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Dynamic networks vary over time, making it vital to capture networks temporal patterns for predicting missing links with high accuracy. A biased non-negative latent factorization of tensors (BNLFT) model is very effective in extracting such patterns from dynamic data. However, a BNLFT model only integrates single bias, which cannot adequately represents the volatility of the dynamic data. To address this issue, this paper presents a Diverse Biases Non-negative Latent Factorization of Tensors (DBNT) model for accurate prediction of missing links in dynamic networks. Meanwhile, for further prediction accuracy improvement, the preprocessing bias is integrated into the DBNT model. Empirical studies on two dynamic networks datasets from real applications show that compared with state of the art predictors, a DBNT model achieves higher prediction accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态网络链路预测的多偏差非负潜分解张量模型
动态网络随时间而变化,因此捕获网络时间模式对于高精度预测缺失链接至关重要。有偏的非负潜分解张量(BNLFT)模型在从动态数据中提取此类模式方面非常有效。然而,BNLFT模型只集成了单偏差,不能充分代表动态数据的波动性。为了解决这一问题,本文提出了一种多元偏差非负潜分解张量(DBNT)模型,用于准确预测动态网络中的缺失环节。同时,为了进一步提高预测精度,将预处理偏差集成到DBNT模型中。对两个实际应用的动态网络数据集的实证研究表明,与现有的预测器相比,DBNT模型具有更高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Deep Multiple-input and Single-output PointNet for 3D Model Retrieval A Reinforcement Learning Based Medium Access Control Method for LoRa Networks A Novel Reinforcement-Learning-Based Approach to Scientific Workflow Scheduling Accelerated Latent Factor Analysis for Recommender Systems via PID Controller A Diverse Biases Non-negative Latent Factorization of Tensors Model for Dynamic Network Link Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1