{"title":"An MPC based Power Management Method for Renewable Energy Hydrogen based DC Microgrids","authors":"Mengfan Zhang, Q. Xu","doi":"10.1109/APEC43580.2023.10131431","DOIUrl":null,"url":null,"abstract":"The renewable energy hydrogen based dc microgrid is an attractive solution for renewables integration, as the hydrogen is a clean fuel, that extra renewable energy source generation can be stored as hydrogen through electrolysis technology, and be used later through fuel cell technology. However, the efficiency of the electrolyzer and fuel cell change significantly under the wide operation ranges, and they have different degradation mechanisms that are greatly impacted by current ripples. Moreover, to achieve consistent power supply with 1000/0 RESs, the electrolyzer and fuel cell need to be optimally coordinated. To address the issues, this paper proposes an MPC based power management method to achieve smooth power sharing and reduce the current ripple, also can guarantee the system stability under uncertainties of the renewable energy source and load. It consists of a baseline MPC for optimized transient performance and a sliding mode observer to estimate system uncertainties. Both the simulation and experiment results can validate the effectiveness of the proposed method.","PeriodicalId":151216,"journal":{"name":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"8 16","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC43580.2023.10131431","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The renewable energy hydrogen based dc microgrid is an attractive solution for renewables integration, as the hydrogen is a clean fuel, that extra renewable energy source generation can be stored as hydrogen through electrolysis technology, and be used later through fuel cell technology. However, the efficiency of the electrolyzer and fuel cell change significantly under the wide operation ranges, and they have different degradation mechanisms that are greatly impacted by current ripples. Moreover, to achieve consistent power supply with 1000/0 RESs, the electrolyzer and fuel cell need to be optimally coordinated. To address the issues, this paper proposes an MPC based power management method to achieve smooth power sharing and reduce the current ripple, also can guarantee the system stability under uncertainties of the renewable energy source and load. It consists of a baseline MPC for optimized transient performance and a sliding mode observer to estimate system uncertainties. Both the simulation and experiment results can validate the effectiveness of the proposed method.