EXTRACTOR: An extensible framework for identifying Aspect-Oriented refactoring opportunities

Jin Huang, F. Carminati, L. Betev, Jianlin Zhu, C. Luzzi
{"title":"EXTRACTOR: An extensible framework for identifying Aspect-Oriented refactoring opportunities","authors":"Jin Huang, F. Carminati, L. Betev, Jianlin Zhu, C. Luzzi","doi":"10.1109/ICSSEM.2011.6081283","DOIUrl":null,"url":null,"abstract":"Automatic refactoring techniques guarantee the correctness and effectiveness for the transformation of legacy software systems. Existing techniques are not effective to identify refactoring opportunities because of the complexity of composite refactoring and the behavior preservation for Aspect-Oriented refactoring. To address these challenges, we design EXTRACTOR, which is an extensible framework to identify Aspect-Oriented refactoring opportunities. In the framework, the bad smell detector provides significant query ability to detect bad smells, while the template manager enables the customization of bad smell and composite refactoring. Then refactoring opportunities are identified using logic transformation managed by EXTRACTOR Constructor. All these functionalities are based on the logic query engine, which manages the logic representation of programs. Finally we illustrate the effectiveness of the framework using case study.","PeriodicalId":406311,"journal":{"name":"2011 International Conference on System science, Engineering design and Manufacturing informatization","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on System science, Engineering design and Manufacturing informatization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSEM.2011.6081283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Automatic refactoring techniques guarantee the correctness and effectiveness for the transformation of legacy software systems. Existing techniques are not effective to identify refactoring opportunities because of the complexity of composite refactoring and the behavior preservation for Aspect-Oriented refactoring. To address these challenges, we design EXTRACTOR, which is an extensible framework to identify Aspect-Oriented refactoring opportunities. In the framework, the bad smell detector provides significant query ability to detect bad smells, while the template manager enables the customization of bad smell and composite refactoring. Then refactoring opportunities are identified using logic transformation managed by EXTRACTOR Constructor. All these functionalities are based on the logic query engine, which manages the logic representation of programs. Finally we illustrate the effectiveness of the framework using case study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EXTRACTOR:用于识别面向方面重构机会的可扩展框架
自动重构技术保证了遗留软件系统转换的正确性和有效性。由于复合重构的复杂性和面向方面重构的行为保留,现有的技术不能有效地识别重构机会。为了应对这些挑战,我们设计了EXTRACTOR,它是一个可扩展的框架,用于识别面向方面的重构机会。在框架中,臭味检测器提供了检测臭味的重要查询功能,而模板管理器支持自定义臭味和组合重构。然后使用EXTRACTOR构造器管理的逻辑转换识别重构机会。所有这些功能都基于逻辑查询引擎,该引擎管理程序的逻辑表示。最后,通过案例分析说明了该框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EXTRACTOR: An extensible framework for identifying Aspect-Oriented refactoring opportunities Scenario simulation of Sino-Singapore Tianjin Eco-city development based on System Dynamics Face recognition based on classifier combinations Computer aided design and manufacture of high precision cam Design of wireless sensor networks for density of natural gas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1