F. Zhou, Weizong Xu, Yulei Jin, Tianyang Zhou, F. Ren, Dong Zhou, Yuanyang Xia, Leke Wu, Yih-Juan Li, T. Zhu, Dunjun Chen, Rong Zhang, Youdou Zheng, Hai Lu
{"title":"3.0-V-Threshold-Voltage p-GaN HEMTs with Low-Loss Reverse Conduction capability","authors":"F. Zhou, Weizong Xu, Yulei Jin, Tianyang Zhou, F. Ren, Dong Zhou, Yuanyang Xia, Leke Wu, Yih-Juan Li, T. Zhu, Dunjun Chen, Rong Zhang, Youdou Zheng, Hai Lu","doi":"10.1109/ISPSD57135.2023.10147450","DOIUrl":null,"url":null,"abstract":"In this work, the low-loss reverse conduction and high threshold voltage characteristics are simultaneously demonstrated in 1 kV/10 A $p$-GaN high electron mobility transistors (HEMTs) on an existing 6-inch process platform, thanks to the combined advantages of the uniquely designed source-controlled p-GaN hybrid structure and improved gate-stack layer. The reverse-conduction turn-on voltage of the resultant device is effectively decoupled from the threshold voltage and gate bias, which is different from the conventional p-GaN gate HEMTs. In addition, superior dynamic performances with nanosecond reverse recovery and switching characteristics are also realized, revealing the notable potentials of the high-$V_{\\text{TH}}$ low-loss p-GaN HEMTs for high-power and high-frequency applications.","PeriodicalId":344266,"journal":{"name":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD57135.2023.10147450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the low-loss reverse conduction and high threshold voltage characteristics are simultaneously demonstrated in 1 kV/10 A $p$-GaN high electron mobility transistors (HEMTs) on an existing 6-inch process platform, thanks to the combined advantages of the uniquely designed source-controlled p-GaN hybrid structure and improved gate-stack layer. The reverse-conduction turn-on voltage of the resultant device is effectively decoupled from the threshold voltage and gate bias, which is different from the conventional p-GaN gate HEMTs. In addition, superior dynamic performances with nanosecond reverse recovery and switching characteristics are also realized, revealing the notable potentials of the high-$V_{\text{TH}}$ low-loss p-GaN HEMTs for high-power and high-frequency applications.
在这项工作中,由于独特设计的源控p-GaN混合结构和改进的栅极堆叠层的综合优势,在现有的6英寸工艺平台上,在1 kV/10 A p-GaN高电子迁移率晶体管(hemt)中同时展示了低损耗反导和高阈值电压特性。与传统的p-GaN栅极hemt不同,该器件的反向导通电压与阈值电压和栅极偏置有效解耦。此外,还实现了具有纳秒级反向恢复和开关特性的优异动态性能,揭示了高V_{\text{TH}}$低损耗p-GaN hemt在高功率和高频应用中的显着潜力。