Guillem López-Paradís, Brian Li, Adrià Armejach, Stefan Wallentowitz, Miquel Moretó, Jonathan Balkind
{"title":"Fast Behavioural RTL Simulation of 10B Transistor SoC Designs with Metro-Mpi","authors":"Guillem López-Paradís, Brian Li, Adrià Armejach, Stefan Wallentowitz, Miquel Moretó, Jonathan Balkind","doi":"10.23919/DATE56975.2023.10137080","DOIUrl":null,"url":null,"abstract":"Chips with tens of billions of transistors have become today's norm. These designs are straining our electronic design automation tools throughout the design process, requiring ever more computational resources. In many tools, parallelisation has improved both latency and throughput for the designer's benefit. However, tools largely remain restricted to a single machine and in the case of RTL simulation, we believe that this leaves much potential performance on the table. We introduce Metro-MPI to improve RTL simulation for modern 10 billion transistor-scale chips. Metro-MPI exploits the natural boundaries present in chip designs to partition RTL simulations and leverage High Performance Computing (HPC) techniques to extract parallelism. For chip designs that scale in size by exploiting latency-insensitive interfaces like networks-on-chip and AXI, Metro-MPI offers a new paradigm for RTL simulation scalability. Our implementation of Metro-MPI in Open-Piton+Ariane delivers 2.7 MIPS of RTL simulation throughput for the first time on a design with more than 10 billion transistors and 1,024 Linux-capable cores, opening new avenues for distributed RTL simulation of emerging system-on-chip designs. Compared to sequential and multithreaded RTL simulations of smaller designs, Metro-MPI achieves up to $135.98\\times$ and $9.29\\times$ speedups. Similarly, for a representative regression run, Metro-Mpireduces energy consumption by up to $2.53\\times$ and $2.91\\times$.","PeriodicalId":340349,"journal":{"name":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE56975.2023.10137080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Chips with tens of billions of transistors have become today's norm. These designs are straining our electronic design automation tools throughout the design process, requiring ever more computational resources. In many tools, parallelisation has improved both latency and throughput for the designer's benefit. However, tools largely remain restricted to a single machine and in the case of RTL simulation, we believe that this leaves much potential performance on the table. We introduce Metro-MPI to improve RTL simulation for modern 10 billion transistor-scale chips. Metro-MPI exploits the natural boundaries present in chip designs to partition RTL simulations and leverage High Performance Computing (HPC) techniques to extract parallelism. For chip designs that scale in size by exploiting latency-insensitive interfaces like networks-on-chip and AXI, Metro-MPI offers a new paradigm for RTL simulation scalability. Our implementation of Metro-MPI in Open-Piton+Ariane delivers 2.7 MIPS of RTL simulation throughput for the first time on a design with more than 10 billion transistors and 1,024 Linux-capable cores, opening new avenues for distributed RTL simulation of emerging system-on-chip designs. Compared to sequential and multithreaded RTL simulations of smaller designs, Metro-MPI achieves up to $135.98\times$ and $9.29\times$ speedups. Similarly, for a representative regression run, Metro-Mpireduces energy consumption by up to $2.53\times$ and $2.91\times$.