Lightspeed Binary Neural Networks using Optical Phase-Change Materials

Taha Shahroodi, Raphael Cardoso, Mahdi Zahedi, Stephan Wong, A. Bosio, Ian O’Connor, S. Hamdioui
{"title":"Lightspeed Binary Neural Networks using Optical Phase-Change Materials","authors":"Taha Shahroodi, Raphael Cardoso, Mahdi Zahedi, Stephan Wong, A. Bosio, Ian O’Connor, S. Hamdioui","doi":"10.23919/DATE56975.2023.10137229","DOIUrl":null,"url":null,"abstract":"This paper investigates the potential of a compute-in-memory core based on optical Phase Change Materials (oPCMs) to speed up and reduce the energy consumption of the Matrix-Matrix-Multiplication operation. The paper also proposes a new data mapping for Binary Neural Networks (BNNs) tailored for our oPCM core. The preliminary results show a significant latency improvement irrespective of the evaluated network structure and size. The improvement varies from network to network and goes up to ~1053x.","PeriodicalId":340349,"journal":{"name":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE56975.2023.10137229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper investigates the potential of a compute-in-memory core based on optical Phase Change Materials (oPCMs) to speed up and reduce the energy consumption of the Matrix-Matrix-Multiplication operation. The paper also proposes a new data mapping for Binary Neural Networks (BNNs) tailored for our oPCM core. The preliminary results show a significant latency improvement irrespective of the evaluated network structure and size. The improvement varies from network to network and goes up to ~1053x.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用光学相变材料的光速二元神经网络
本文研究了一种基于光学相变材料(oPCMs)的内存计算核在加速和降低矩阵-矩阵-乘法运算能耗方面的潜力。本文还针对我们的oPCM核心提出了一种新的二元神经网络(bnn)数据映射方法。初步结果表明,无论评估的网络结构和大小如何,延迟都有显著改善。不同网络的改进程度不同,最高可达~1053x。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Securing a RISC-V architecture: A dynamic approach Perspector: Benchmarking Benchmark Suites Fast Behavioural RTL Simulation of 10B Transistor SoC Designs with Metro-Mpi Lightspeed Binary Neural Networks using Optical Phase-Change Materials Time Series-based Driving Event Recognition for Two Wheelers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1