Wavelet Decomposition Pre-processing for Spatial Scalability Video Compression Scheme

Glenn Herrou, W. Hamidouche, L. Morin
{"title":"Wavelet Decomposition Pre-processing for Spatial Scalability Video Compression Scheme","authors":"Glenn Herrou, W. Hamidouche, L. Morin","doi":"10.1109/PCS.2018.8456307","DOIUrl":null,"url":null,"abstract":"Scalable video coding enables to compress the video at different formats within a single layered bitstream. SHVC, the scalable extension of the High Efficiency Video Coding (HEVC) standard, enables x2 spatial scalability, among other additional features. The closed-loop architecture of the SHVC codec is based on the use of multiple instances of the HEVC codec to encode the video layers, which considerably increases the encoding complexity. With the arrival of new immersive video formats, like 4K, 8K, High Frame Rate (HFR) and 360° videos, the quantity of data to compress is exploding, making the use of high-complexity coding algorithms unsuitable. In this paper, we propose a lowcomplexity scalable coding scheme based on the use of a single HEVC codec instance and a wavelet-based decomposition as pre-processing. The pre-encoding image decomposition relies on well-known simple Discrete Wavelet Transform (DWT) kernels, such as Haar or Le Gall 5/3. Compared to SHVC, the proposed architecture achieves a similar rate distortion performance with a coding complexity reduction of 50%.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Scalable video coding enables to compress the video at different formats within a single layered bitstream. SHVC, the scalable extension of the High Efficiency Video Coding (HEVC) standard, enables x2 spatial scalability, among other additional features. The closed-loop architecture of the SHVC codec is based on the use of multiple instances of the HEVC codec to encode the video layers, which considerably increases the encoding complexity. With the arrival of new immersive video formats, like 4K, 8K, High Frame Rate (HFR) and 360° videos, the quantity of data to compress is exploding, making the use of high-complexity coding algorithms unsuitable. In this paper, we propose a lowcomplexity scalable coding scheme based on the use of a single HEVC codec instance and a wavelet-based decomposition as pre-processing. The pre-encoding image decomposition relies on well-known simple Discrete Wavelet Transform (DWT) kernels, such as Haar or Le Gall 5/3. Compared to SHVC, the proposed architecture achieves a similar rate distortion performance with a coding complexity reduction of 50%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间可扩展性视频压缩方案的小波分解预处理
可扩展的视频编码可以在单个层比特流中压缩不同格式的视频。SHVC是高效视频编码(HEVC)标准的可扩展扩展,支持x2空间可扩展性,以及其他附加功能。SHVC编解码器的闭环架构是基于使用多个HEVC编解码器实例对视频层进行编码,这大大增加了编码复杂度。随着新的沉浸式视频格式的出现,如4K、8K、高帧率(HFR)和360°视频,需要压缩的数据量呈爆炸式增长,这使得使用高复杂性的编码算法变得不合适。在本文中,我们提出了一种基于单个HEVC编解码器实例和基于小波分解作为预处理的低复杂度可扩展编码方案。预编码图像分解依赖于众所周知的简单离散小波变换(DWT)核,如Haar或Le Gall 5/3。与SHVC相比,该结构在编码复杂度降低50%的情况下实现了相似的率失真性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Future Video Coding Technologies: A Performance Evaluation of AV1, JEM, VP9, and HM Joint Optimization of Rate, Distortion, and Maximum Absolute Error for Compression of Medical Volumes Using HEVC Intra Wavelet Decomposition Pre-processing for Spatial Scalability Video Compression Scheme Detecting Source Video Artifacts with Supervised Sparse Filters Perceptually-Aligned Frame Rate Selection Using Spatio-Temporal Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1