Perceptually-Aligned Frame Rate Selection Using Spatio-Temporal Features

Angeliki V. Katsenou, Di Ma, D. Bull
{"title":"Perceptually-Aligned Frame Rate Selection Using Spatio-Temporal Features","authors":"Angeliki V. Katsenou, Di Ma, D. Bull","doi":"10.1109/PCS.2018.8456274","DOIUrl":null,"url":null,"abstract":"During recent years, the standardisation committees on video compression and broadcast formats have worked on extending practical video frame rates up to 120 frames per second. Generally, increased video frame rates have been shown to improve immersion, but at the cost of higher bit rates. Taking into consideration that the benefits of high frame rates are content dependent, a decision mechanism that recommends the appropriate frame rate for the specific content would provide benefits prior to compression and transmission. Furthermore, this decision mechanism must take account of the perceived video quality. The proposed method extracts and selects suitable spatio-temporal features and uses a supervised machine learning technique to build a model that is able to predict, with high accuracy, the lowest frame rate for which the perceived video quality is indistinguishable from that of video at the acquisition frame rate. The results show that it is a promising tool for prior to compression and delivery processing of videos, such as content-aware frame rate adaptation.","PeriodicalId":433667,"journal":{"name":"2018 Picture Coding Symposium (PCS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Picture Coding Symposium (PCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2018.8456274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

During recent years, the standardisation committees on video compression and broadcast formats have worked on extending practical video frame rates up to 120 frames per second. Generally, increased video frame rates have been shown to improve immersion, but at the cost of higher bit rates. Taking into consideration that the benefits of high frame rates are content dependent, a decision mechanism that recommends the appropriate frame rate for the specific content would provide benefits prior to compression and transmission. Furthermore, this decision mechanism must take account of the perceived video quality. The proposed method extracts and selects suitable spatio-temporal features and uses a supervised machine learning technique to build a model that is able to predict, with high accuracy, the lowest frame rate for which the perceived video quality is indistinguishable from that of video at the acquisition frame rate. The results show that it is a promising tool for prior to compression and delivery processing of videos, such as content-aware frame rate adaptation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时空特征的感知对齐帧率选择
近年来,视频压缩和广播格式标准化委员会一直致力于将实际视频帧率提高到每秒120帧。一般来说,提高视频帧率已经被证明可以提高沉浸感,但代价是更高的比特率。考虑到高帧率的好处依赖于内容,为特定内容推荐适当帧率的决策机制将在压缩和传输之前提供好处。此外,这种决策机制必须考虑到感知到的视频质量。该方法提取并选择合适的时空特征,并使用监督机器学习技术构建一个模型,该模型能够高精度地预测在获取帧率下感知到的视频质量与视频质量无法区分的最低帧率。结果表明,它是一种很有前途的工具,用于视频的预先压缩和传输处理,如内容感知帧率自适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Future Video Coding Technologies: A Performance Evaluation of AV1, JEM, VP9, and HM Joint Optimization of Rate, Distortion, and Maximum Absolute Error for Compression of Medical Volumes Using HEVC Intra Wavelet Decomposition Pre-processing for Spatial Scalability Video Compression Scheme Detecting Source Video Artifacts with Supervised Sparse Filters Perceptually-Aligned Frame Rate Selection Using Spatio-Temporal Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1