Exploiting the imperfect knowledge of reference nodes positions in range based positioning systems

M. Laaraiedh, S. Avrillon, B. Uguen
{"title":"Exploiting the imperfect knowledge of reference nodes positions in range based positioning systems","authors":"M. Laaraiedh, S. Avrillon, B. Uguen","doi":"10.1109/ICSCS.2009.5412689","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of uncertainty on reference nodes positions is addressed in the context of hybrid data fusion techniques for localization. This problem arises in B3G networks where different location-dependent observables come from heterogeneous Radio Access Networks (RAN) leading to different levels of uncertainty on both ranges and anchor nodes positions. We assume a Gaussian model on the node position error as well as on the ranging error. We derive novel Maximum Likelihood based location estimator which considers these two sources of uncertainty. The performances of this new estimator is then compared to the ML estimator which does not consider erroneous reference nodes positions. Monte Carlo simulations show that the proposed estimator achieves better performances especially in the context of short range positioning.","PeriodicalId":126072,"journal":{"name":"2009 3rd International Conference on Signals, Circuits and Systems (SCS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 3rd International Conference on Signals, Circuits and Systems (SCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCS.2009.5412689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the problem of uncertainty on reference nodes positions is addressed in the context of hybrid data fusion techniques for localization. This problem arises in B3G networks where different location-dependent observables come from heterogeneous Radio Access Networks (RAN) leading to different levels of uncertainty on both ranges and anchor nodes positions. We assume a Gaussian model on the node position error as well as on the ranging error. We derive novel Maximum Likelihood based location estimator which considers these two sources of uncertainty. The performances of this new estimator is then compared to the ML estimator which does not consider erroneous reference nodes positions. Monte Carlo simulations show that the proposed estimator achieves better performances especially in the context of short range positioning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于距离的定位系统中参考节点位置的不完善知识
在混合数据融合定位技术的背景下,研究了参考节点位置的不确定性问题。这一问题出现在B3G网络中,其中来自异构无线接入网(RAN)的不同位置相关可观测值导致距离和锚节点位置的不确定性程度不同。我们假设节点位置误差和测距误差都是高斯模型。我们提出了一种新的基于极大似然的位置估计方法,它考虑了这两种不确定性来源。然后将这个新估计器的性能与不考虑错误参考节点位置的ML估计器进行比较。蒙特卡罗仿真结果表明,该估计器在近距离定位环境下具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Attributes regrouping in fuzzy rule based classification systems LaboRem: open lab for remote work Enhanced TRNG based on the coherent sampling Exploiting the imperfect knowledge of reference nodes positions in range based positioning systems Improved LMI formulation for robust dynamic output feedback controller design of discrete-time switched systems via switched Lyapunov function
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1