An Eigen-decomposition Free Method for Computing Graph Fourier Transform Centrality

C. Tseng, Su-Ling Lee
{"title":"An Eigen-decomposition Free Method for Computing Graph Fourier Transform Centrality","authors":"C. Tseng, Su-Ling Lee","doi":"10.1109/APCCAS55924.2022.10090355","DOIUrl":null,"url":null,"abstract":"In this paper, an eigen-decomposition free method is presented to compute the graph Fourier transform centrality (GFTC) of complex network. For conventional computation method of GFTC, it needs to compute eigen-decomposition of graph Laplacian matrix for obtaining the transform basis of graph Fourier transform (GFT), which may not be computable for larger networks. To tackle this problem, the graph filtering method is applied to transform the spectral-domain GFTC computation task to vertex-domain one such that GFTC can be computed by using graph filter which is easily designed by the least squares (LS) method. Finally, the centrality computations of the Taipei metro network and karate-club social network are used to show the effectiveness of the proposed GFTC computation method.","PeriodicalId":243739,"journal":{"name":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS55924.2022.10090355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an eigen-decomposition free method is presented to compute the graph Fourier transform centrality (GFTC) of complex network. For conventional computation method of GFTC, it needs to compute eigen-decomposition of graph Laplacian matrix for obtaining the transform basis of graph Fourier transform (GFT), which may not be computable for larger networks. To tackle this problem, the graph filtering method is applied to transform the spectral-domain GFTC computation task to vertex-domain one such that GFTC can be computed by using graph filter which is easily designed by the least squares (LS) method. Finally, the centrality computations of the Taipei metro network and karate-club social network are used to show the effectiveness of the proposed GFTC computation method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算图傅里叶变换中心性的无特征分解方法
本文提出了一种计算复杂网络图傅里叶变换中心性的无特征分解方法。传统的GFTC计算方法需要计算图拉普拉斯矩阵的特征分解来获得图傅里叶变换(GFT)的变换基,这对于较大的网络可能无法计算。为了解决这一问题,采用图滤波方法将谱域GFTC的计算任务转换为顶点域的计算任务,使GFTC的计算可以利用图滤波器进行,而图滤波器易于用最小二乘(LS)方法设计。最后,以台北市地铁网络与空手道俱乐部社交网络的中心性计算,验证本文所提出的GFTC计算方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Energy-Efficient Mixed-Bit ReRAM-based Computing-in-Memory CNN Accelerator with Fully Parallel Readout An Eigen-decomposition Free Method for Computing Graph Fourier Transform Centrality A 60-GHz CMOS Balanced Power Amplifier with Miniaturized Quadrature Hybrids Achieving 19.0-dBm Output Power and 24.4% Peak PAE A Vector Pair Based DWA Algorithm for Linearity Enhancement of CDACs in the NS-SAR ADC Optimal Evasive Path Planning with Velocity Constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1