An Automatic Algorithm Selection Approach for Planning

M. Vallati, L. Chrpa, D. Kitchin
{"title":"An Automatic Algorithm Selection Approach for Planning","authors":"M. Vallati, L. Chrpa, D. Kitchin","doi":"10.1109/ICTAI.2013.12","DOIUrl":null,"url":null,"abstract":"Despite the advances made in the last decade in automated planning, no planner outperforms all the others in every known benchmark domain. This observation motivates the idea of selecting different planning algorithms for different domains. Moreover, the planners' performances are affected by the structure of the search space, which depends on the encoding of the considered domain. In many domains, the performance of a planner can be improved by exploiting additional knowledge, extracted in the form of macro-operators or entanglements. In this paper we propose ASAP, an automatic Algorithm Selection Approach for Planning that: (i) for a given domain initially learns additional knowledge, in the form of macro-operators and entanglements, which is used for creating different encodings of the given planning domain and problems, and (ii) explores the 2 dimensional space of available algorithms, defined as encodings -- planners couples, and then (iii) selects the most promising algorithm for optimising either the runtimes or the quality of the solution plans.","PeriodicalId":140309,"journal":{"name":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","volume":"12 1-4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2013.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Despite the advances made in the last decade in automated planning, no planner outperforms all the others in every known benchmark domain. This observation motivates the idea of selecting different planning algorithms for different domains. Moreover, the planners' performances are affected by the structure of the search space, which depends on the encoding of the considered domain. In many domains, the performance of a planner can be improved by exploiting additional knowledge, extracted in the form of macro-operators or entanglements. In this paper we propose ASAP, an automatic Algorithm Selection Approach for Planning that: (i) for a given domain initially learns additional knowledge, in the form of macro-operators and entanglements, which is used for creating different encodings of the given planning domain and problems, and (ii) explores the 2 dimensional space of available algorithms, defined as encodings -- planners couples, and then (iii) selects the most promising algorithm for optimising either the runtimes or the quality of the solution plans.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种规划自动算法选择方法
尽管过去十年在自动化规划方面取得了进展,但在每个已知的基准领域中,没有一个规划器比所有其他规划器表现得更好。这种观察激发了为不同领域选择不同规划算法的想法。此外,规划器的性能受搜索空间结构的影响,而搜索空间的结构取决于所考虑域的编码。在许多领域,规划器的性能可以通过利用以宏观操作符或纠缠形式提取的额外知识来改进。本文提出了一种规划的自动算法选择方法ASAP:(i)对于给定领域,首先以宏观运算符和纠缠的形式学习额外的知识,用于创建给定规划领域和问题的不同编码;(ii)探索可用算法的二维空间,定义为编码-规划器对;然后(iii)选择最有希望的算法来优化运行时或解决方案的质量计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Automatic Algorithm Selection Approach for Planning Learning Useful Macro-actions for Planning with N-Grams Optimizing Dynamic Ensemble Selection Procedure by Evolutionary Extreme Learning Machines and a Noise Reduction Filter Motion-Driven Action-Based Planning Assessing Procedural Knowledge in Free-Text Answers through a Hybrid Semantic Web Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1