A comparison of inertial-based navigation algorithms for a low-cost indoor mobile robot

Tobias Fauser, S. Bruder, A. El-Osery
{"title":"A comparison of inertial-based navigation algorithms for a low-cost indoor mobile robot","authors":"Tobias Fauser, S. Bruder, A. El-Osery","doi":"10.1109/ICCSE.2017.8085471","DOIUrl":null,"url":null,"abstract":"Reliable navigation of a low-cost mobile robot in an indoor environment can prove to be challenging as position fixing sensors, such as a GNSS receiver, are typically unavailable. Subscribing to the premise of a baseline of odometry and inertial sensors, this paper compares three navigation strategies, namely, a full 6-DOF inertial measurement unit (IMU) with kinematic constraints, a partial IMU with gyro pseudo-measurements, and an IMU with a depth camera. In the third configuration, by embracing the reality that vertical and horizontal planes dominate the indoor environment, an infrared depth camera is employed to determine surface normals and thereby provide attitude aiding. The paper presents a theoretical basis of the aided inertial navigational problems, MATLAB/Simulink-based simulation results, and finally the performance realized from the implementation of the algorithms on a QUANSER QBot 2 mobile robot employing a VectorNav VN-200 IMU and Kinect IR depth camera.","PeriodicalId":256055,"journal":{"name":"2017 12th International Conference on Computer Science and Education (ICCSE)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Conference on Computer Science and Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2017.8085471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Reliable navigation of a low-cost mobile robot in an indoor environment can prove to be challenging as position fixing sensors, such as a GNSS receiver, are typically unavailable. Subscribing to the premise of a baseline of odometry and inertial sensors, this paper compares three navigation strategies, namely, a full 6-DOF inertial measurement unit (IMU) with kinematic constraints, a partial IMU with gyro pseudo-measurements, and an IMU with a depth camera. In the third configuration, by embracing the reality that vertical and horizontal planes dominate the indoor environment, an infrared depth camera is employed to determine surface normals and thereby provide attitude aiding. The paper presents a theoretical basis of the aided inertial navigational problems, MATLAB/Simulink-based simulation results, and finally the performance realized from the implementation of the algorithms on a QUANSER QBot 2 mobile robot employing a VectorNav VN-200 IMU and Kinect IR depth camera.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于惯性的低成本室内移动机器人导航算法比较
在室内环境中,低成本移动机器人的可靠导航可能被证明是具有挑战性的,因为位置固定传感器(如GNSS接收器)通常不可用。在以里程计和惯性传感器为基准的前提下,对带运动约束的全6自由度惯性测量单元(IMU)、带陀螺仪伪测量的部分惯性测量单元(IMU)和带深度相机的惯性测量单元(IMU)三种导航策略进行了比较。在第三种配置中,考虑到室内环境的垂直和水平面占主导地位,采用了红外深度相机来确定表面法线,从而提供姿态辅助。本文给出了辅助惯性导航问题的理论基础,基于MATLAB/ simulink的仿真结果,最后在采用VectorNav VN-200 IMU和Kinect IR深度相机的qanser QBot 2移动机器人上实现了算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A unified approach to automate the usage of plagiarism detection tools in programming courses Software verification of Orion cockpit displays Wine quality identification based on data mining research A comparison of inertial-based navigation algorithms for a low-cost indoor mobile robot A HCI design for developing touch-operation-based DGS: What you think is what you get
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1