Intrusion detection using error correcting output code based ensemble

Shaza Merghani AbdElrahman, A. Abraham
{"title":"Intrusion detection using error correcting output code based ensemble","authors":"Shaza Merghani AbdElrahman, A. Abraham","doi":"10.1109/HIS.2014.7086194","DOIUrl":null,"url":null,"abstract":"Intrusion Detection System is an essential part in computer security. Researchers have proposed many methods but most of them suffer from low detection rates and high false alarm rates. In this paper, we try to tackle the class imbalance problem, increase detection rates for each class and minimize false alarms in intrusion detection system. We test the performance of seven classifiers using Bagging and AdaBoost ensemble methods. We proposed a new hybrid ensemble for intrusion detection based on Error Correcting Output Code (ECOC) approach.","PeriodicalId":161103,"journal":{"name":"2014 14th International Conference on Hybrid Intelligent Systems","volume":"70 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2014.7086194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Intrusion Detection System is an essential part in computer security. Researchers have proposed many methods but most of them suffer from low detection rates and high false alarm rates. In this paper, we try to tackle the class imbalance problem, increase detection rates for each class and minimize false alarms in intrusion detection system. We test the performance of seven classifiers using Bagging and AdaBoost ensemble methods. We proposed a new hybrid ensemble for intrusion detection based on Error Correcting Output Code (ECOC) approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于集成的入侵检测纠错输出代码
入侵检测系统是计算机安全的重要组成部分。研究人员提出了许多方法,但大多存在检出率低、误报率高的问题。本文试图解决入侵检测系统中的类不平衡问题,提高各类的检测率,最大限度地减少误报。我们使用Bagging和AdaBoost集成方法测试了七个分类器的性能。提出了一种基于纠错输出码(ECOC)方法的混合集成入侵检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid model for information filtering in location based social networks using text mining Intrusion detection using error correcting output code based ensemble Human action recognition via multi-scale 3D stationary wavelet analysis Research of customer behavior anomalies in big financial data Intelligent road surface quality evaluation using rough mereology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1