Research of customer behavior anomalies in big financial data

D. Kriksciuniene, Marius Liutvinavicius, V. Sakalauskas, Darius Tamasauskas
{"title":"Research of customer behavior anomalies in big financial data","authors":"D. Kriksciuniene, Marius Liutvinavicius, V. Sakalauskas, Darius Tamasauskas","doi":"10.1109/HIS.2014.7086178","DOIUrl":null,"url":null,"abstract":"The amount of data in financial institutions is growing rapidly and the subject of “big data” has become an urgent trend. The “big data” phenomenon brings challenge to empower analytical methods for enhanced scope. At the same time the big data composed from various sources opens new possibilities to capitalize data research. The article investigates the anomalies in big data used by financial institutions. It proposes the model designed for exploring dynamics and detecting anomalous behavior of bank customers. The experimental screening on bank customers' big data shows significant time and necessary calculation steps reduction for detecting suspicious operations.","PeriodicalId":161103,"journal":{"name":"2014 14th International Conference on Hybrid Intelligent Systems","volume":"243 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2014.7086178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The amount of data in financial institutions is growing rapidly and the subject of “big data” has become an urgent trend. The “big data” phenomenon brings challenge to empower analytical methods for enhanced scope. At the same time the big data composed from various sources opens new possibilities to capitalize data research. The article investigates the anomalies in big data used by financial institutions. It proposes the model designed for exploring dynamics and detecting anomalous behavior of bank customers. The experimental screening on bank customers' big data shows significant time and necessary calculation steps reduction for detecting suspicious operations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金融大数据中的客户行为异常研究
金融机构的数据量快速增长,“大数据”主题已成为一个紧迫的趋势。“大数据”现象给分析方法带来了挑战,使其具有更大的范围。同时,各种来源的大数据为数据研究的资本化提供了新的可能性。本文调查了金融机构使用的大数据中的异常现象。提出了用于银行客户动态探索和异常行为检测的模型。通过对银行客户大数据的实验筛选,发现可疑操作的时间和必要的计算步骤大大减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid model for information filtering in location based social networks using text mining Intrusion detection using error correcting output code based ensemble Human action recognition via multi-scale 3D stationary wavelet analysis Research of customer behavior anomalies in big financial data Intelligent road surface quality evaluation using rough mereology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1