FPGA Based Hybrid Computing Platform for ESS Linac Simulator

A. Jeevaraj, E. Laface, Maurizio Donna, F. Edman, Liang Liu
{"title":"FPGA Based Hybrid Computing Platform for ESS Linac Simulator","authors":"A. Jeevaraj, E. Laface, Maurizio Donna, F. Edman, Liang Liu","doi":"10.1109/NORCHIP.2018.8573518","DOIUrl":null,"url":null,"abstract":"This paper presents a scalable and high-throughput hybrid computing platform for the real-time multi-particle based Linac (Linear accelerator) simulation model to be used at the European Spallation Source (ESS). The multi-particle simulation model with non-linear modeling is needed to provide a realistic behavior of the particle beam for reducing the losses at the superconducting structures. The computation complexity of the simulations can reach 1012 matrix multiplication operations for a test case of 106 beam particles simulated over 106 cells. An OpenCL (Open Computing Language) based framework is used to map the processing intensive parts of the simulation model efficiently to any configuration of a CPU-, GPU- and FPGA-based platform. Optimizations using data precision strategies have also been explored to further improve the throughput after reaching memory access saturation. We are able to achieve up to $89 \\times$ speed up compared to a C++ benchmark of the same system.","PeriodicalId":152077,"journal":{"name":"2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Nordic Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium of System-on-Chip (SoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NORCHIP.2018.8573518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a scalable and high-throughput hybrid computing platform for the real-time multi-particle based Linac (Linear accelerator) simulation model to be used at the European Spallation Source (ESS). The multi-particle simulation model with non-linear modeling is needed to provide a realistic behavior of the particle beam for reducing the losses at the superconducting structures. The computation complexity of the simulations can reach 1012 matrix multiplication operations for a test case of 106 beam particles simulated over 106 cells. An OpenCL (Open Computing Language) based framework is used to map the processing intensive parts of the simulation model efficiently to any configuration of a CPU-, GPU- and FPGA-based platform. Optimizations using data precision strategies have also been explored to further improve the throughput after reaching memory access saturation. We are able to achieve up to $89 \times$ speed up compared to a C++ benchmark of the same system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于FPGA的ESS直线模拟器混合计算平台
本文提出了一个可扩展的、高通量的混合计算平台,用于欧洲散裂源(ESS)的实时多粒子线性加速器仿真模型。为了减少超导结构的损耗,需要采用非线性建模的多粒子模拟模型来提供粒子束的真实行为。在106个单元上模拟106束粒子的测试用例中,模拟的计算复杂度可达到1012次矩阵乘法运算。使用基于OpenCL(开放计算语言)的框架将仿真模型的处理密集型部分有效地映射到基于CPU、GPU和fpga的平台的任何配置。还探索了使用数据精度策略的优化,以进一步提高达到内存访问饱和后的吞吐量。与同一系统的c++基准测试相比,我们能够实现高达89倍的速度提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FPGA Based Hybrid Computing Platform for ESS Linac Simulator Flying-Capacitor Bottom-Plate Sampling Scheme for Low-Power High-Resolution SAR ADCs CMOS photosensors for LIDAR A Design Approach for SiGe Low-Noise Amplifiers Using Wideband Input Matching Design and Implementation of 2D IDCT/IDST-Specific Accelerator on Heterogeneous Multicore Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1