Deep Q-Network (DQN) Approach for Automatic Vehicles Applied in the Intelligent Transportation System (ITS)

Vo Thi Thanh Ha, Tran Ngoc Tu, Nguyen Trung Dung, Trinh Luong Mien, Chu Thị Thu Thủy
{"title":"Deep Q-Network (DQN) Approach for Automatic Vehicles Applied in the Intelligent Transportation System (ITS)","authors":"Vo Thi Thanh Ha, Tran Ngoc Tu, Nguyen Trung Dung, Trinh Luong Mien, Chu Thị Thu Thủy","doi":"10.1109/ICSSE58758.2023.10227206","DOIUrl":null,"url":null,"abstract":"This paper presents the design of an intelligent controller applying reinforcement learning using a deep Q-network (DQN) algorithm for autonomous vehicles. The deep Q-network (DQN) algorithm is an online, model-free reinforcement learning approach. A DQN agent is a value-based reinforcement learning agent that teaches a critic to predict future rewards or returns. Deep Q-network is to replace the action-state Q table with a neural network. This solution applies to building a self-propelled agent capable of correcting static and moving obstacles according to the physical environment. As a result, the autonomous vehicle can move and avoid collisions with obstacles. The correctness of the theory is demonstrated through MATLAB simulation.","PeriodicalId":280745,"journal":{"name":"2023 International Conference on System Science and Engineering (ICSSE)","volume":"60 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on System Science and Engineering (ICSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSSE58758.2023.10227206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the design of an intelligent controller applying reinforcement learning using a deep Q-network (DQN) algorithm for autonomous vehicles. The deep Q-network (DQN) algorithm is an online, model-free reinforcement learning approach. A DQN agent is a value-based reinforcement learning agent that teaches a critic to predict future rewards or returns. Deep Q-network is to replace the action-state Q table with a neural network. This solution applies to building a self-propelled agent capable of correcting static and moving obstacles according to the physical environment. As a result, the autonomous vehicle can move and avoid collisions with obstacles. The correctness of the theory is demonstrated through MATLAB simulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度q -网络(DQN)方法在智能交通系统中的应用
本文提出了一种基于深度q -网络(DQN)算法的强化学习智能控制器的设计。deep Q-network (DQN)算法是一种在线的、无模型的强化学习方法。DQN代理是一种基于价值的强化学习代理,它教会评论家预测未来的奖励或回报。深度Q-network是用神经网络代替动作状态Q表。这个解决方案适用于构建一个能够根据物理环境纠正静态和移动障碍物的自推进代理。因此,自动驾驶汽车可以移动并避免与障碍物碰撞。通过MATLAB仿真验证了理论的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Q-Network (DQN) Approach for Automatic Vehicles Applied in the Intelligent Transportation System (ITS) Improvement in Proportional Energy Sharing and DC Bus Voltage Restoring for DC Microgrid in the Islanded Operation Mode A New Buck-Boost Converter Structure With Improved Efficiency Performance of Energy Harvesting Aided Multi-hop Mobile Relay Networks With and Without Using Cooperative Communication A New Novel of Prescribed Optimal Control and Its Application for Smart Damping System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1