A flexible and efficient hardware architecture for real-time face recognition based on eigenface

H. T. Ngo, Rajkiran Gottumukkal, V. Asari
{"title":"A flexible and efficient hardware architecture for real-time face recognition based on eigenface","authors":"H. T. Ngo, Rajkiran Gottumukkal, V. Asari","doi":"10.1109/ISVLSI.2005.5","DOIUrl":null,"url":null,"abstract":"We describe a flexible and efficient multilane architecture for real-time face recognition system based on modular principal component analysis (PCA) method in a field programmable gate array (FPGA) environment. We have shown in Gottumukkal R., and Asan K.V., (2004) that modular PCA improves the accuracy of face recognition when the face images have varying expression and illumination. The flexible and parallel architecture design consists of multiple processing elements to operate on predefined regions of a face image. Each processing element is also parallelized with multiple pipelined paths/lanes to simultaneously compute weight vectors of the non-overlapping region, hence called multilane architecture. The architecture is able to recognize a face image from a database of 1000 face images in 11ms.","PeriodicalId":158790,"journal":{"name":"IEEE Computer Society Annual Symposium on VLSI: New Frontiers in VLSI Design (ISVLSI'05)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Society Annual Symposium on VLSI: New Frontiers in VLSI Design (ISVLSI'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISVLSI.2005.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

We describe a flexible and efficient multilane architecture for real-time face recognition system based on modular principal component analysis (PCA) method in a field programmable gate array (FPGA) environment. We have shown in Gottumukkal R., and Asan K.V., (2004) that modular PCA improves the accuracy of face recognition when the face images have varying expression and illumination. The flexible and parallel architecture design consists of multiple processing elements to operate on predefined regions of a face image. Each processing element is also parallelized with multiple pipelined paths/lanes to simultaneously compute weight vectors of the non-overlapping region, hence called multilane architecture. The architecture is able to recognize a face image from a database of 1000 face images in 11ms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种灵活高效的基于特征脸的实时人脸识别硬件架构
在现场可编程门阵列(FPGA)环境下,提出了一种灵活高效的基于模块化主成分分析(PCA)方法的实时人脸识别系统多车道架构。我们在Gottumukkal R.和Asan k.v.(2004)中表明,当人脸图像具有不同的表情和光照时,模块化PCA提高了人脸识别的准确性。灵活的并行架构设计由多个处理元素组成,对人脸图像的预定义区域进行操作。每个处理单元还被并行化到多个管道路径/通道,以同时计算非重叠区域的权向量,因此称为多通道架构。该架构能够在11毫秒内从1000张人脸图像的数据库中识别出一张人脸图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A flexible and efficient hardware architecture for real-time face recognition based on eigenface Novel switch block architecture using non-volatile functional pass-gate for multi-context FPGAs Quasi-exact BDD minimization using relaxed best-first search Fault diagnosis and fault model aliasing An improved dynamic optically reconfigurable gate array
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1