Application of Learned OWA Operators in Pooling and Channel Aggregation Layers in Convolutional Neural Networks

Leonam R. S. Miranda, F. G. Guimarães
{"title":"Application of Learned OWA Operators in Pooling and Channel Aggregation Layers in Convolutional Neural Networks","authors":"Leonam R. S. Miranda, F. G. Guimarães","doi":"10.5753/eniac.2022.227310","DOIUrl":null,"url":null,"abstract":"Promising results have been obtained in recent years when using OWA operators to aggregate data within CNNs pool layers, training their weights, instead of using the more usual operators (max and mean). OWA operators were also used to learn channel wise information from a certain layer, and the newly generated information is used to complement the input data for the following layer. The purpose of this article is to analyze and combine the two mentioned ideas. In addition to using the channel wise information generated by trainable OWA operators to complement the input data, replacement will also be analyzed. Several tests have been done to evaluate the performance change when applying OWA operators to classify images using VGG13 model.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Promising results have been obtained in recent years when using OWA operators to aggregate data within CNNs pool layers, training their weights, instead of using the more usual operators (max and mean). OWA operators were also used to learn channel wise information from a certain layer, and the newly generated information is used to complement the input data for the following layer. The purpose of this article is to analyze and combine the two mentioned ideas. In addition to using the channel wise information generated by trainable OWA operators to complement the input data, replacement will also be analyzed. Several tests have been done to evaluate the performance change when applying OWA operators to classify images using VGG13 model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习OWA算子在卷积神经网络池化层和通道聚合层中的应用
近年来,使用OWA算子来聚合cnn池层内的数据,训练它们的权值,而不是使用更常用的算子(max和mean),已经获得了很好的结果。OWA操作符还用于从某一层学习信道信息,新生成的信息用于补充下一层的输入数据。本文的目的是对上述两种思想进行分析和结合。除了使用可训练的OWA操作员生成的通道明智信息来补充输入数据外,还将分析替换情况。为了评估使用VGG13模型应用OWA操作符对图像进行分类时的性能变化,已经进行了一些测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Learned OWA Operators in Pooling and Channel Aggregation Layers in Convolutional Neural Networks Improving steel making off-gas predictions by mixing classification and regression multi-modal multivariate models A Framework for prediction of dropout in distance learning through XAI techniques in Virtual Learning Environment Textile defect detection using YOLOv5 on AITEX Dataset Aspects of a learned model to predict the quality of life of university students in Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1