Improving steel making off-gas predictions by mixing classification and regression multi-modal multivariate models

Marcelo Magalhães do Carmo, Filipe Wall Mutz, L. Resendo
{"title":"Improving steel making off-gas predictions by mixing classification and regression multi-modal multivariate models","authors":"Marcelo Magalhães do Carmo, Filipe Wall Mutz, L. Resendo","doi":"10.5753/eniac.2022.227570","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of real-time short-term multi-period off-gas prediction in a steel making batch process, denominated Linz-Donawitz Gas (LDG). Baselines, heuristic statistical methods, multi-modal multivariate Long Short-Term Memory (LSTM) and Ensemble Gradient Boosting Decision Tree (GBDT) strategies were proposed and compared. Proposed methods, mixing classification and regression tasks, achieved good results on recoverable LDG prediction, establishing a benchmark on subject for future works. Experiments suggest improvements from 19.4% to 15.85% on average in mean absolute percentage error (MAPE) over recent reviewed papers within a similar scenario at same steel making plant.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the problem of real-time short-term multi-period off-gas prediction in a steel making batch process, denominated Linz-Donawitz Gas (LDG). Baselines, heuristic statistical methods, multi-modal multivariate Long Short-Term Memory (LSTM) and Ensemble Gradient Boosting Decision Tree (GBDT) strategies were proposed and compared. Proposed methods, mixing classification and regression tasks, achieved good results on recoverable LDG prediction, establishing a benchmark on subject for future works. Experiments suggest improvements from 19.4% to 15.85% on average in mean absolute percentage error (MAPE) over recent reviewed papers within a similar scenario at same steel making plant.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用分类回归多模态混合模型改进炼钢废气预测
本文研究了炼钢间歇过程(Linz-Donawitz Gas, LDG)短期多周期废气实时预测问题。提出并比较了基线、启发式统计方法、多模态多变量长短期记忆(LSTM)和集成梯度增强决策树(GBDT)策略。提出的方法将分类与回归任务相结合,在可采LDG预测上取得了较好的效果,为今后的工作奠定了学科标杆。实验表明,在同一钢铁厂的类似情况下,与最近审查的论文相比,平均绝对百分比误差(MAPE)平均从19.4%提高到15.85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Learned OWA Operators in Pooling and Channel Aggregation Layers in Convolutional Neural Networks Improving steel making off-gas predictions by mixing classification and regression multi-modal multivariate models A Framework for prediction of dropout in distance learning through XAI techniques in Virtual Learning Environment Textile defect detection using YOLOv5 on AITEX Dataset Aspects of a learned model to predict the quality of life of university students in Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1