首页 > 最新文献

Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)最新文献

英文 中文
How aspects of similar datasets can impact distributional models 相似数据集的各个方面如何影响分布模型
Isabella Maria Alonso Gomes, N. T. Roman
Distributional models have become popular due to the abstractions that allowed their immediate use, with good results and little implementation effort when compared to precursor models. Given their presumed high level of generalization it would be expected that good and similar results would be found in data sets sharing the same nature and purpose. However, this is not always the case. In this work, we present the results of the application of BERTimbau in two related data sets, built for the task of Semantic Similarity identification, with the goal of detecting redundancy in text. Results showed that there are considerable differences in accuracy between the data sets. We explore aspects of the data sets that could explain why accuracy results are different across them.
分布式模型已经变得流行,因为它的抽象允许它们立即使用,与前身模型相比,它的效果很好,实现的工作量很少。鉴于它们假定的高度泛化,可以预期在具有相同性质和目的的数据集中会发现良好和类似的结果。然而,情况并非总是如此。在这项工作中,我们展示了BERTimbau在两个相关数据集上的应用结果,这两个数据集是为语义相似度识别任务而构建的,目的是检测文本中的冗余。结果表明,数据集之间存在相当大的准确性差异。我们探讨了数据集的各个方面,这些方面可以解释为什么它们之间的准确性结果不同。
{"title":"How aspects of similar datasets can impact distributional models","authors":"Isabella Maria Alonso Gomes, N. T. Roman","doi":"10.5753/eniac.2022.227085","DOIUrl":"https://doi.org/10.5753/eniac.2022.227085","url":null,"abstract":"Distributional models have become popular due to the abstractions that allowed their immediate use, with good results and little implementation effort when compared to precursor models. Given their presumed high level of generalization it would be expected that good and similar results would be found in data sets sharing the same nature and purpose. However, this is not always the case. In this work, we present the results of the application of BERTimbau in two related data sets, built for the task of Semantic Similarity identification, with the goal of detecting redundancy in text. Results showed that there are considerable differences in accuracy between the data sets. We explore aspects of the data sets that could explain why accuracy results are different across them.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115382812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Framework for prediction of dropout in distance learning through XAI techniques in Virtual Learning Environment 虚拟学习环境中基于XAI技术的远程学习辍学预测框架
Herbert da Silva Costa, Anderson Cordeiro Cardoso, Cristiane Mendes Netto, D. C. Martins-Jr, S. Simões
Um desafio na modalidade EaD é combater a evasão, que segundo a ABED, varia entre 21 e 50%. Para este fim, diversos métodos de mineração de dados foram aplicados, utilizando dados de interações dos alunos no AVA. Contudo, um problema relevante é selecionar as melhores características (variáveis/atributos) para predição da evasão. Neste artigo, propomos um arcabouço que utiliza métodos de explicabilidade (XAI-SHAP) para selecionar atributos com maior poder preditivo em VLE que utilizam CMS terceirizados. Após a seleção, o modelo proposto alcançou resultados de recall 0,96 e precision 0,95, compatíveis com o estado da arte, porém utilizando um conjunto menor de atributos e uma base de dados com menor número de instâncias.
远程教育模式的一个挑战是对抗辍学率,根据ABED的数据,辍学率在21%到50%之间。为此,我们应用了几种数据挖掘方法,利用学生在虚拟环境中的交互数据。然而,一个相关的问题是选择最佳的特征(变量/属性)来预测逃避。在本文中,我们提出了一个框架,该框架使用可解释方法(XAI-SHAP)来选择使用第三方CMS的VLE中具有更强预测能力的属性。经过选择,该模型的召回结果为0.96,精度为0.95,与目前的技术水平一致,但使用了更小的属性集和实例数量更少的数据库。
{"title":"A Framework for prediction of dropout in distance learning through XAI techniques in Virtual Learning Environment","authors":"Herbert da Silva Costa, Anderson Cordeiro Cardoso, Cristiane Mendes Netto, D. C. Martins-Jr, S. Simões","doi":"10.5753/eniac.2022.227586","DOIUrl":"https://doi.org/10.5753/eniac.2022.227586","url":null,"abstract":"Um desafio na modalidade EaD é combater a evasão, que segundo a ABED, varia entre 21 e 50%. Para este fim, diversos métodos de mineração de dados foram aplicados, utilizando dados de interações dos alunos no AVA. Contudo, um problema relevante é selecionar as melhores características (variáveis/atributos) para predição da evasão. Neste artigo, propomos um arcabouço que utiliza métodos de explicabilidade (XAI-SHAP) para selecionar atributos com maior poder preditivo em VLE que utilizam CMS terceirizados. Após a seleção, o modelo proposto alcançou resultados de recall 0,96 e precision 0,95, compatíveis com o estado da arte, porém utilizando um conjunto menor de atributos e uma base de dados com menor número de instâncias.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114658156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feature engineering vs. extraction: clustering Brazilian municipalities through spatial panel agricultural data via autoencoders 特征工程vs.提取:通过自动编码器通过空间面板农业数据聚类巴西城市
M. A. S. D. Silva, L. N. Matos, F. E. O. Santos, M. H. Dompieri, F. Moura
This article compares the clustering of Brazilian municipalities according to their agricultural diversity using two approaches, one based on feature engineering and the other based on feature extraction using Deep Learning based on autoencoders and cluster analysis based on k-means and Self-Organizing Maps. The analyzes were conducted from panel data referring to IBGE’s annual estimates of Brazilian agricultural production between 1999 and 2018. Different structures of simple stacked undercomplete autoencoders were analyzed, varying the number of layers and neurons in each of them, including the latent layer. The asymmetric exponential linear loss function was also evaluated to cope with the sparse data. The results show that in comparison with the ground truth adopted, the autoencoder model combined with the k-means presented a superior result than the clustering of the raw data from the k-means, demonstrating the ability of simple autoencoders to represent from their latent layer important features of the data. Although the general accuracy is low, the results are promising, considering that we evaluated the most simple strategy for Deep Clustering.
本文使用两种方法根据巴西城市的农业多样性对其聚类进行了比较,一种方法基于特征工程,另一种方法基于基于自动编码器的深度学习和基于k-means和自组织地图的聚类分析的特征提取。这些分析是根据IBGE 1999年至2018年巴西农业生产年度估计数的面板数据进行的。分析了不同结构的简单堆叠欠完全自编码器,改变了层数和神经元数,包括潜在层。利用非对称指数线性损失函数来处理稀疏数据。结果表明,与采用的ground truth相比,结合k-means的自编码器模型的聚类结果优于k-means的原始数据聚类结果,证明了简单的自编码器能够从其潜在层表示数据的重要特征。虽然总体精度较低,但考虑到我们评估了最简单的深度聚类策略,结果是有希望的。
{"title":"Feature engineering vs. extraction: clustering Brazilian municipalities through spatial panel agricultural data via autoencoders","authors":"M. A. S. D. Silva, L. N. Matos, F. E. O. Santos, M. H. Dompieri, F. Moura","doi":"10.5753/eniac.2022.227622","DOIUrl":"https://doi.org/10.5753/eniac.2022.227622","url":null,"abstract":"This article compares the clustering of Brazilian municipalities according to their agricultural diversity using two approaches, one based on feature engineering and the other based on feature extraction using Deep Learning based on autoencoders and cluster analysis based on k-means and Self-Organizing Maps. The analyzes were conducted from panel data referring to IBGE’s annual estimates of Brazilian agricultural production between 1999 and 2018. Different structures of simple stacked undercomplete autoencoders were analyzed, varying the number of layers and neurons in each of them, including the latent layer. The asymmetric exponential linear loss function was also evaluated to cope with the sparse data. The results show that in comparison with the ground truth adopted, the autoencoder model combined with the k-means presented a superior result than the clustering of the raw data from the k-means, demonstrating the ability of simple autoencoders to represent from their latent layer important features of the data. Although the general accuracy is low, the results are promising, considering that we evaluated the most simple strategy for Deep Clustering.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127347483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aspects of a learned model to predict the quality of life of university students in Brazil 学习模型的各个方面来预测巴西大学生的生活质量
Pedro Francis Lopes, Amilton dos Santos Júnior, R. Azevedo, P. Dalgalarrondo, A. Fioravanti
Quality of life is an essential metric for evaluating the well-being of students. This work investigates the viability of a model to predict a WHOQoL-Bref answer based on other answers and the overall domain and average scores. For that, we use data from an extensive pooling done with undergraduate students in Brazil (UNICAMP), gathered between 2017 and 2018. We also discuss model types and hyperparameter effects on model evaluation metrics. Finally, we conclude that it is possible to create a model to predict the esteem question - which is the most correlated with the average domain score with the data sample available.
生活质量是衡量学生生活质量的重要指标。这项工作研究了基于其他答案和整体领域和平均分数预测whoqol - brief答案的模型的可行性。为此,我们使用了2017年至2018年期间对巴西本科生(UNICAMP)进行的广泛汇总的数据。我们还讨论了模型类型和超参数对模型评价指标的影响。最后,我们得出结论,有可能创建一个模型来预测自尊问题——这是与可用数据样本的平均领域得分最相关的。
{"title":"Aspects of a learned model to predict the quality of life of university students in Brazil","authors":"Pedro Francis Lopes, Amilton dos Santos Júnior, R. Azevedo, P. Dalgalarrondo, A. Fioravanti","doi":"10.5753/eniac.2022.227315","DOIUrl":"https://doi.org/10.5753/eniac.2022.227315","url":null,"abstract":"Quality of life is an essential metric for evaluating the well-being of students. This work investigates the viability of a model to predict a WHOQoL-Bref answer based on other answers and the overall domain and average scores. For that, we use data from an extensive pooling done with undergraduate students in Brazil (UNICAMP), gathered between 2017 and 2018. We also discuss model types and hyperparameter effects on model evaluation metrics. Finally, we conclude that it is possible to create a model to predict the esteem question - which is the most correlated with the average domain score with the data sample available.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115067836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel One-to-Many Matching Method for the Assignment Problem: An ENEM Case Study 分配问题一种新的一对多匹配方法:一个ENEM案例研究
Giuseppe F. Neto, Pericles Miranda, R. F. Mello, André C. A. Nascimento
A distribuição de candidatos em locais de provas é um problema logístico relevante e afeta diversos países, inclusive o Brasil, que realizam exames de seleção por meio de avaliações presenciais. Definir uma distribuição adequada considerando critérios como distância, custo e ocupação é uma tarefa desafiadora. Este trabalho trata a tarefa em questão como um problema combinatório de casamento estável e propõe um novo algoritmo de otimização (O2MSM) para a distribuição automática de candidatos a locais de teste. O O2MSM visa encontrar uma correspondência estável entre candidatos e locais de prova, minimizando a distância entre eles e o número de locais de prova e maximizando a taxa de ocupação desses locais. Os resultados mostraram que o O2MSM superou a abordagem baseline, sendo mais eficiente, realizando a distribuição dos candidatos em segundos, e mais eficaz, reduzindo ao máximo o número de locais de prova, vagas e distância dos candidatos.
考生在考试地点的分布是一个相关的后勤问题,影响到包括巴西在内的几个国家,这些国家通过面对面的评估进行选拔考试。考虑距离、成本和占用等标准,定义一个合适的分布是一项具有挑战性的任务。本文将该任务视为一个稳定匹配的组合问题,并提出了一种新的优化算法(O2MSM)来自动分配候选人到测试地点。O2MSM的目标是在候选人和比赛场地之间找到稳定的匹配,最大限度地减少他们和比赛场地数量之间的距离,并最大限度地提高这些场地的占用率。结果表明,O2MSM优于基线方法,更有效,在几秒钟内完成候选人的分布,更有效,最大限度地减少比赛地点的数量,空缺和距离候选人的距离。
{"title":"A Novel One-to-Many Matching Method for the Assignment Problem: An ENEM Case Study","authors":"Giuseppe F. Neto, Pericles Miranda, R. F. Mello, André C. A. Nascimento","doi":"10.5753/eniac.2022.227548","DOIUrl":"https://doi.org/10.5753/eniac.2022.227548","url":null,"abstract":"A distribuição de candidatos em locais de provas é um problema logístico relevante e afeta diversos países, inclusive o Brasil, que realizam exames de seleção por meio de avaliações presenciais. Definir uma distribuição adequada considerando critérios como distância, custo e ocupação é uma tarefa desafiadora. Este trabalho trata a tarefa em questão como um problema combinatório de casamento estável e propõe um novo algoritmo de otimização (O2MSM) para a distribuição automática de candidatos a locais de teste. O O2MSM visa encontrar uma correspondência estável entre candidatos e locais de prova, minimizando a distância entre eles e o número de locais de prova e maximizando a taxa de ocupação desses locais. Os resultados mostraram que o O2MSM superou a abordagem baseline, sendo mais eficiente, realizando a distribuição dos candidatos em segundos, e mais eficaz, reduzindo ao máximo o número de locais de prova, vagas e distância dos candidatos.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122952510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-Domain Sentiment Analysis in Portuguese using BERT 基于BERT的葡萄牙语跨域情感分析
Larissa F. S. Britto, Luis A. S. Pessoa, Silvania C. C. Agostinho
O Cruzamento de Domínios tem se tornado uma abordagem comum para lidar com a escassez de dados rotulados na Análise de Sentimentos (AS). No entanto, a dependência de domínio da AS e as particularidades associadas a cada domínio podem impactar, negativamente, o desempenho dos modelos de classificação. Neste trabalho, avaliamos a capacidade de generalização do modelo BERT na tarefa de Classificação de Polaridade com Cruzamento de Domínios em Português. Para fins de comparação, classificadores tradicionais de Aprendizagem de Máquina e métodos para extração de características são analisados. O BERT apresentou resultados promissores mesmo com a mudança de domínio, chegando a alcançar 92% de acurácia.
域交叉已经成为一种常见的方法来处理情感分析中标记数据的缺乏。然而,AS的域依赖性和与每个域相关的特性会对分类模型的性能产生负面影响。在这项工作中,我们评估了BERT模型在葡萄牙语域交叉极性分类任务中的泛化能力。为了便于比较,对传统的机器学习分类器和特征提取方法进行了分析。即使在域改变的情况下,BERT也显示出很有前景的结果,准确率达到92%。
{"title":"Cross-Domain Sentiment Analysis in Portuguese using BERT","authors":"Larissa F. S. Britto, Luis A. S. Pessoa, Silvania C. C. Agostinho","doi":"10.5753/eniac.2022.227217","DOIUrl":"https://doi.org/10.5753/eniac.2022.227217","url":null,"abstract":"O Cruzamento de Domínios tem se tornado uma abordagem comum para lidar com a escassez de dados rotulados na Análise de Sentimentos (AS). No entanto, a dependência de domínio da AS e as particularidades associadas a cada domínio podem impactar, negativamente, o desempenho dos modelos de classificação. Neste trabalho, avaliamos a capacidade de generalização do modelo BERT na tarefa de Classificação de Polaridade com Cruzamento de Domínios em Português. Para fins de comparação, classificadores tradicionais de Aprendizagem de Máquina e métodos para extração de características são analisados. O BERT apresentou resultados promissores mesmo com a mudança de domínio, chegando a alcançar 92% de acurácia.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126990239","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Random Forest for Code Smell Detection in JavaScript JavaScript代码气味检测的随机森林
Diego S. Sarafim, K. V. Delgado, D. Cordeiro
JavaScript has become one of the most widely used programming languages. JavaScript is a dynamic, interpreted, and weakly-typed scripting language especially suited for the development of web applications. While these characteristics allow the language to offer high levels of flexibility, they also can make JavaScript code more challenging to write, maintain and evolve. One of the risks that JavaScript and other programming languages are prone to is the presence of code smells. Code smells result from poor programming choices during source code development that negatively influence source code comprehension and maintainability in the long term. This work reports the result of an approach that uses the Random Forest algorithm to detect a set of 11 code smells based on software metrics extracted from JavaScript source code. It also reports the construction of two datasets, one for code smells that affect functions/methods, and another for code smells related to classes, both containing at least 200 labeled positive instances of each code smell and both extracted from a set of 25 open-source JavaScript projects.
JavaScript已经成为使用最广泛的编程语言之一。JavaScript是一种动态的、解释的、弱类型的脚本语言,特别适合于web应用程序的开发。虽然这些特征使该语言提供了高度的灵活性,但它们也会使JavaScript代码的编写、维护和发展更具挑战性。JavaScript和其他编程语言容易出现的风险之一是存在代码异味。代码异味来自于源代码开发过程中糟糕的编程选择,从长远来看会对源代码的可理解性和可维护性产生负面影响。这项工作报告了一种方法的结果,该方法使用随机森林算法根据从JavaScript源代码中提取的软件度量来检测一组11种代码气味。它还报告了两个数据集的构建,一个用于影响函数/方法的代码气味,另一个用于与类相关的代码气味,两者都包含至少200个标记的每种代码气味的积极实例,并且都是从25个开源JavaScript项目中提取的。
{"title":"Random Forest for Code Smell Detection in JavaScript","authors":"Diego S. Sarafim, K. V. Delgado, D. Cordeiro","doi":"10.5753/eniac.2022.227328","DOIUrl":"https://doi.org/10.5753/eniac.2022.227328","url":null,"abstract":"JavaScript has become one of the most widely used programming languages. JavaScript is a dynamic, interpreted, and weakly-typed scripting language especially suited for the development of web applications. While these characteristics allow the language to offer high levels of flexibility, they also can make JavaScript code more challenging to write, maintain and evolve. One of the risks that JavaScript and other programming languages are prone to is the presence of code smells. Code smells result from poor programming choices during source code development that negatively influence source code comprehension and maintainability in the long term. This work reports the result of an approach that uses the Random Forest algorithm to detect a set of 11 code smells based on software metrics extracted from JavaScript source code. It also reports the construction of two datasets, one for code smells that affect functions/methods, and another for code smells related to classes, both containing at least 200 labeled positive instances of each code smell and both extracted from a set of 25 open-source JavaScript projects.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123401504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Textile defect detection using YOLOv5 on AITEX Dataset 基于AITEX数据集的YOLOv5纺织品缺陷检测
Rodolfo Seidel, Hilário Seibel Júnior, K. S. Komati
Devido à identificação manual de defeitos têxteis ainda nos dias atuais, é necessário encontrar meios de detectar defeitos de forma automatizada e eficiente. Para isso, este trabalho se propõe a aplicar o modelo YOLOv5 na base de dados AITEX, usando a abordagem de detecção de objetos para localizar e identificar defeitos, avaliando diferentes técnicas de anotação de objetos e data augmentation. Com os resultados obtidos, concluiu-se que o YOLOv5 adaptou-se muito bem a outro contexto com objetos distintos do prétreinamento, as anotações com Bounding Boxes permitiram maior aprendizado e reconhecimento dos defeitos, mesmo com diferentes formas e tamanhos, e por fim, a combinação de data augmentation potencializam seu desempenho.
由于手工识别纺织品缺陷仍然是必要的,找到一种方法来自动和有效地检测缺陷。为此,本文提出将YOLOv5模型应用于AITEX数据库,利用对象检测方法定位和识别缺陷,评估不同的对象注释技术和日期增加。YOLOv5的结果,结果发现他调整好了另一个上下文和不同对象的prétreinamento,注释使用键框允许存在的缺陷,对学习和识别不同的形状和大小,最后,结合数据增加potencializam的表现。
{"title":"Textile defect detection using YOLOv5 on AITEX Dataset","authors":"Rodolfo Seidel, Hilário Seibel Júnior, K. S. Komati","doi":"10.5753/eniac.2022.227396","DOIUrl":"https://doi.org/10.5753/eniac.2022.227396","url":null,"abstract":"Devido à identificação manual de defeitos têxteis ainda nos dias atuais, é necessário encontrar meios de detectar defeitos de forma automatizada e eficiente. Para isso, este trabalho se propõe a aplicar o modelo YOLOv5 na base de dados AITEX, usando a abordagem de detecção de objetos para localizar e identificar defeitos, avaliando diferentes técnicas de anotação de objetos e data augmentation. Com os resultados obtidos, concluiu-se que o YOLOv5 adaptou-se muito bem a outro contexto com objetos distintos do prétreinamento, as anotações com Bounding Boxes permitiram maior aprendizado e reconhecimento dos defeitos, mesmo com diferentes formas e tamanhos, e por fim, a combinação de data augmentation potencializam seu desempenho.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114723903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation of Rat Behavior in a Light-Dark Box via Neuroevolution 通过神经进化模拟光-暗盒子中的大鼠行为
Marco Aurelio Bastos Souza, Edson Eduardo Borges da Silva, João Pedro M. Tarrega, R. Tinós, A. Costa
The light-dark box is a widely used test for the investigation of animal behavior commonly used to identify and study anxious-like behavioral patterns in rodents. We propose a neuroevolution model for virtual rats in a simulated light-dark box. The virtual rat is controlled by an artificial neural network (ANN) optimized by a genetic algorithm (GA). The fitness function is given by a weighed sum of two terms (punishment and reward). By changing the weight of the punishment term, we are able to simulate the effects of anxiolytic/anxiogenic drugs on rats. We also propose using GAs to optimize the number of the ANN hidden neurons and sensors for the virtual rat. According to the experiments, the best results are obtained by ANNs combining both luminosity and wall sensors.
明暗箱是一种广泛使用的动物行为调查测试,通常用于识别和研究啮齿动物的焦虑样行为模式。我们提出了一个模拟光-暗盒子中虚拟大鼠的神经进化模型。虚拟大鼠由遗传算法优化的人工神经网络(ANN)控制。适应度函数由两项(惩罚和奖励)的加权和给出。通过改变惩罚项的权重,我们能够模拟抗焦虑/致焦虑药物对大鼠的影响。我们还提出了使用GAs来优化虚拟大鼠的神经网络隐藏神经元和传感器的数量。实验结果表明,将亮度传感器和壁面传感器结合使用的人工神经网络效果最好。
{"title":"Simulation of Rat Behavior in a Light-Dark Box via Neuroevolution","authors":"Marco Aurelio Bastos Souza, Edson Eduardo Borges da Silva, João Pedro M. Tarrega, R. Tinós, A. Costa","doi":"10.5753/eniac.2022.227630","DOIUrl":"https://doi.org/10.5753/eniac.2022.227630","url":null,"abstract":"The light-dark box is a widely used test for the investigation of animal behavior commonly used to identify and study anxious-like behavioral patterns in rodents. We propose a neuroevolution model for virtual rats in a simulated light-dark box. The virtual rat is controlled by an artificial neural network (ANN) optimized by a genetic algorithm (GA). The fitness function is given by a weighed sum of two terms (punishment and reward). By changing the weight of the punishment term, we are able to simulate the effects of anxiolytic/anxiogenic drugs on rats. We also propose using GAs to optimize the number of the ANN hidden neurons and sensors for the virtual rat. According to the experiments, the best results are obtained by ANNs combining both luminosity and wall sensors.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"4 3","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133238140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Use of Clonal Selection Principle in Cartesian Genetic Programming for Designing Combinational Logic Circuits 克隆选择原理在笛卡尔遗传规划组合逻辑电路设计中的应用
J. E. H. D. Silva, L. N. S. Prachedes, H. Bernardino, J. Camata, I. L. Oliveira
Evolutionary techniques have been used in the design and optimization of combinational logic circuits. This procedure is called evolvable hardware and Cartesian Genetic Programming (CGP) is the evolutionary technique with the best performance in this context. Despite the good results obtained by CGP techniques, its search procedure usually evolves a single candidate solution by an evolution strategy and this approach tends to be trapped in local optima. On the other hand, clonal selection techniques in general, and CLONALG in particular, were designed to avoid converging to a low-quality local optimum. Thus, we propose here using the representation of CGP with the search procedure of a Clonal Selection Algorithm to minimize the number of transistors of combinational logic circuits. Furthermore, a parameter sensitivity analysis is performed. The results are assessed considering a benchmark from the literature and showed a reduction in the number of transistors when compared to the baseline ESPRESSO.
进化技术已被用于组合逻辑电路的设计和优化。这个过程被称为可进化硬件,而笛卡尔遗传规划(CGP)是在这种情况下性能最好的进化技术。尽管CGP技术取得了较好的结果,但其搜索过程通常采用进化策略来演化单个候选解,容易陷入局部最优状态。另一方面,克隆选择技术,特别是CLONALG,旨在避免收敛到低质量的局部最优。因此,我们在此提出使用CGP表示和克隆选择算法的搜索过程来最小化组合逻辑电路的晶体管数量。此外,还进行了参数敏感性分析。根据文献中的基准对结果进行评估,并显示与基线ESPRESSO相比晶体管数量减少。
{"title":"On the Use of Clonal Selection Principle in Cartesian Genetic Programming for Designing Combinational Logic Circuits","authors":"J. E. H. D. Silva, L. N. S. Prachedes, H. Bernardino, J. Camata, I. L. Oliveira","doi":"10.5753/eniac.2022.227641","DOIUrl":"https://doi.org/10.5753/eniac.2022.227641","url":null,"abstract":"Evolutionary techniques have been used in the design and optimization of combinational logic circuits. This procedure is called evolvable hardware and Cartesian Genetic Programming (CGP) is the evolutionary technique with the best performance in this context. Despite the good results obtained by CGP techniques, its search procedure usually evolves a single candidate solution by an evolution strategy and this approach tends to be trapped in local optima. On the other hand, clonal selection techniques in general, and CLONALG in particular, were designed to avoid converging to a low-quality local optimum. Thus, we propose here using the representation of CGP with the search procedure of a Clonal Selection Algorithm to minimize the number of transistors of combinational logic circuits. Furthermore, a parameter sensitivity analysis is performed. The results are assessed considering a benchmark from the literature and showed a reduction in the number of transistors when compared to the baseline ESPRESSO.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"359 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120895734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1