Adaptive threshold spike detection using stationary wavelet transform for neural recording implants

Yuning Yang, A. Kamboh, J. M. Andrew
{"title":"Adaptive threshold spike detection using stationary wavelet transform for neural recording implants","authors":"Yuning Yang, A. Kamboh, J. M. Andrew","doi":"10.1109/BIOCAS.2010.5709558","DOIUrl":null,"url":null,"abstract":"Spike detection is an essential first step in the analysis of neural recording signals. A new spike detection hardware architecture combining absolute threshold method and stationary wavelet transform (SWT) is described. The method enables spike detection with 90% accuracy even when the signal-to-noise is −1dB. A noise monitoring block was implemented to automatically calculate the appropriate threshold value for spike detection, and the system then chooses either absolute threshold method or the SWT method to optimize power consumption. The system was designed in 130nm CMOS and shown to occupy 0.082 mm2 and dissipate 0.45 μW for one channel.","PeriodicalId":440499,"journal":{"name":"2010 Biomedical Circuits and Systems Conference (BioCAS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2010.5709558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Spike detection is an essential first step in the analysis of neural recording signals. A new spike detection hardware architecture combining absolute threshold method and stationary wavelet transform (SWT) is described. The method enables spike detection with 90% accuracy even when the signal-to-noise is −1dB. A noise monitoring block was implemented to automatically calculate the appropriate threshold value for spike detection, and the system then chooses either absolute threshold method or the SWT method to optimize power consumption. The system was designed in 130nm CMOS and shown to occupy 0.082 mm2 and dissipate 0.45 μW for one channel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于平稳小波变换的自适应阈值尖峰检测
尖峰检测是分析神经记录信号必不可少的第一步。提出了一种结合绝对阈值法和平稳小波变换(SWT)的脉冲检测硬件结构。即使在信噪比为- 1dB时,该方法也能以90%的精度检测尖峰。采用噪声监测模块自动计算合适的峰值检测阈值,然后系统选择绝对阈值法或SWT法来优化功耗。该系统设计在130nm CMOS上,单通道功耗为0.45 μW,占用0.082 mm2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A nonlinear signal-specific ADC for efficient neural recording A reconfigurable neural spike recording channel with feature extraction capabilities Adaptive threshold spike detection using stationary wavelet transform for neural recording implants Design and evaluation of a capacitively coupled sensor readout circuit, toward contact-less ECG and EEG A spike based 3D imager chip using a mixed mode encoding readout
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1