Design and evaluation of a capacitively coupled sensor readout circuit, toward contact-less ECG and EEG

Daniel Svard, A. Cichocki, A. Alvandpour
{"title":"Design and evaluation of a capacitively coupled sensor readout circuit, toward contact-less ECG and EEG","authors":"Daniel Svard, A. Cichocki, A. Alvandpour","doi":"10.1109/BIOCAS.2010.5709631","DOIUrl":null,"url":null,"abstract":"Electrophysiological signal acquisition such as ECG and EEG play an important part in modern medical monitoring and diagnostics. The measurement of these very low-level, low-frequency signals are normally made from the skin with a directly coupled sensor utilizing a conductive gel to create a low resistance path for the charge. The application of the gel is tedious and time consuming as well as requiring a clinical environment and prevents long period measurements. In this paper, a contact-less, capacitively coupled sensor — without any need for gel — together with an electronic readout circuit using a PCB is presented. A design with a very high input impedance allows for measurements of signals with amplitudes down to a few tens of microvolts and at frequencies between a few hertz to tens of hertz. Measurements show that the circuit could detect an input signal of 25 μV at 10 Hz with an SNR of 9.7 dB.","PeriodicalId":440499,"journal":{"name":"2010 Biomedical Circuits and Systems Conference (BioCAS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2010.5709631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Electrophysiological signal acquisition such as ECG and EEG play an important part in modern medical monitoring and diagnostics. The measurement of these very low-level, low-frequency signals are normally made from the skin with a directly coupled sensor utilizing a conductive gel to create a low resistance path for the charge. The application of the gel is tedious and time consuming as well as requiring a clinical environment and prevents long period measurements. In this paper, a contact-less, capacitively coupled sensor — without any need for gel — together with an electronic readout circuit using a PCB is presented. A design with a very high input impedance allows for measurements of signals with amplitudes down to a few tens of microvolts and at frequencies between a few hertz to tens of hertz. Measurements show that the circuit could detect an input signal of 25 μV at 10 Hz with an SNR of 9.7 dB.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向非接触心电和脑电图的电容耦合传感器读出电路的设计与评估
心电、脑电图等电生理信号的采集在现代医学监测和诊断中占有重要地位。这些非常低水平,低频信号的测量通常是由皮肤与一个直接耦合的传感器利用导电凝胶来创建一个低电阻路径的电荷。凝胶的应用是繁琐和耗时的,并且需要临床环境,防止长时间的测量。在本文中,提出了一种无接触,电容耦合传感器-不需要任何凝胶-连同一个电子读出电路使用PCB。具有非常高输入阻抗的设计允许测量幅度低至几十微伏的信号,频率在几赫兹到几十赫兹之间。测试结果表明,该电路可以检测到10 Hz频率下25 μV的输入信号,信噪比为9.7 dB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A nonlinear signal-specific ADC for efficient neural recording A reconfigurable neural spike recording channel with feature extraction capabilities Adaptive threshold spike detection using stationary wavelet transform for neural recording implants Design and evaluation of a capacitively coupled sensor readout circuit, toward contact-less ECG and EEG A spike based 3D imager chip using a mixed mode encoding readout
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1