Spatial analysis of the electron transit time in a silicon/germanium heterojunction bipolar transistor by drift-diffusion, hydrodynamic, and full-band Monte Carlo device simulation
{"title":"Spatial analysis of the electron transit time in a silicon/germanium heterojunction bipolar transistor by drift-diffusion, hydrodynamic, and full-band Monte Carlo device simulation","authors":"C. Jungemann, B. Neinhus, B. Meinerzhagen","doi":"10.1109/SISPAD.2000.871202","DOIUrl":null,"url":null,"abstract":"Transit times and cut-off frequency of a silicon/germanium heterojunction bipolar transistor (SiGe HBT) are investigated by consistent drift-diffusion (DD), hydrodynamic (HD), and full-band Monte Carlo (FB-MC) simulations. Good agreement of all three transport models is found for the collector transit time. The quasiballistic transport in the base is well described by the HD model and yields the same transit time as the FB-MC model, whereas the DD model yields a much larger transit time, because it does not include any velocity overshoot effects. Surprisingly, in the emitter region, the FB-MC model yields the largest transit time, leading to a peak cut-off frequency for the special device structure under investigation which is even smaller than the DD peak value. The strong anisotropy of the strained band structure in the base, which is not captured in full detail by the DD and HD models, is identified as a possible reason for this unexpected behavior.","PeriodicalId":132609,"journal":{"name":"2000 International Conference on Simulation Semiconductor Processes and Devices (Cat. No.00TH8502)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 International Conference on Simulation Semiconductor Processes and Devices (Cat. No.00TH8502)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2000.871202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Transit times and cut-off frequency of a silicon/germanium heterojunction bipolar transistor (SiGe HBT) are investigated by consistent drift-diffusion (DD), hydrodynamic (HD), and full-band Monte Carlo (FB-MC) simulations. Good agreement of all three transport models is found for the collector transit time. The quasiballistic transport in the base is well described by the HD model and yields the same transit time as the FB-MC model, whereas the DD model yields a much larger transit time, because it does not include any velocity overshoot effects. Surprisingly, in the emitter region, the FB-MC model yields the largest transit time, leading to a peak cut-off frequency for the special device structure under investigation which is even smaller than the DD peak value. The strong anisotropy of the strained band structure in the base, which is not captured in full detail by the DD and HD models, is identified as a possible reason for this unexpected behavior.