{"title":"HEp-2 Cell Classification Using Multi-resolution Local Patterns and Ensemble SVMs","authors":"Siyamalan Manivannan, Wenqi Li, Shazia Akbar, Ruixuan Wang, Jianguo Zhang, S. McKenna","doi":"10.1109/I3A.2014.18","DOIUrl":null,"url":null,"abstract":"We describe a pattern recognition system for classifying immunofluorescence images of HEp-2 cells into six classes: homogeneous, speckled, nucleolar, centromere, golgi, and nuclear membrane. We use locality-constrained linear coding to encode multiple local features and two-level cell pyramids to capture spatial structure of cells. An ensemble of linear support vector machines is used to classify each cell image. Leave-one-specimen-out experiments on the I3A Contest Task 1 training data set predicted a mean class accuracy of 80.25%.","PeriodicalId":103785,"journal":{"name":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I3A.2014.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49
Abstract
We describe a pattern recognition system for classifying immunofluorescence images of HEp-2 cells into six classes: homogeneous, speckled, nucleolar, centromere, golgi, and nuclear membrane. We use locality-constrained linear coding to encode multiple local features and two-level cell pyramids to capture spatial structure of cells. An ensemble of linear support vector machines is used to classify each cell image. Leave-one-specimen-out experiments on the I3A Contest Task 1 training data set predicted a mean class accuracy of 80.25%.