Class-Specific Hierarchical Classification of HEp-2 Cell Images: The Case of Two Classes

Krati Gupta, Vibha Gupta, A. Sao, A. Bhavsar, A. D. Dileep
{"title":"Class-Specific Hierarchical Classification of HEp-2 Cell Images: The Case of Two Classes","authors":"Krati Gupta, Vibha Gupta, A. Sao, A. Bhavsar, A. D. Dileep","doi":"10.1109/I3A.2014.13","DOIUrl":null,"url":null,"abstract":"We propose and analyze a novel framework for classification of HEp-2 cell images. It is based upon two important aspects. First, we propose to utilize the expert knowledge about the visual characteristics of classes to formulate class-specific image features. Secondly, realizing that the problem involves a small number of classes, we treat the classification task as hierarchical verification subtasks. Thus, the overall classification problem is posed as a verification of each class, using its class-specific features. The current study reports the results using the Nuclear Membrane and Golgi classes. We demonstrate that our framework yields high classification rate with simple and efficient feature definitions, and only (20%) of the data for training. We also analyze important aspects such as comparison with non-hierarchical approach, and performance on low-contrast images which are important for early disease detection.","PeriodicalId":103785,"journal":{"name":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","volume":"19 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I3A.2014.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We propose and analyze a novel framework for classification of HEp-2 cell images. It is based upon two important aspects. First, we propose to utilize the expert knowledge about the visual characteristics of classes to formulate class-specific image features. Secondly, realizing that the problem involves a small number of classes, we treat the classification task as hierarchical verification subtasks. Thus, the overall classification problem is posed as a verification of each class, using its class-specific features. The current study reports the results using the Nuclear Membrane and Golgi classes. We demonstrate that our framework yields high classification rate with simple and efficient feature definitions, and only (20%) of the data for training. We also analyze important aspects such as comparison with non-hierarchical approach, and performance on low-contrast images which are important for early disease detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HEp-2细胞图像的类特异性分级分类:以两类为例
我们提出并分析了一种新的HEp-2细胞图像分类框架。它基于两个重要方面。首先,我们建议利用关于类的视觉特征的专家知识来制定特定于类的图像特征。其次,考虑到问题涉及的类数量较少,我们将分类任务视为分层验证子任务。因此,整个分类问题被提出作为每个类的验证,使用其特定于类的特征。目前的研究报告了使用核膜和高尔基类的结果。我们证明了我们的框架通过简单有效的特征定义产生了很高的分类率,并且只有(20%)的数据用于训练。我们还分析了重要的方面,如与非分层方法的比较,以及对早期疾病检测重要的低对比度图像的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HEp-2 Cell Classification Using Multi-resolution Local Patterns and Ensemble SVMs A Segmentation Method for Bone Marrow Cavity Imaging Using Graph Cuts Class-Specific Hierarchical Classification of HEp-2 Cell Images: The Case of Two Classes HEp-2 Cell Image Classification with Convolutional Neural Networks A Bag of Words Based Approach for Classification of HEp-2 Cell Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1