A Segmentation Method for Bone Marrow Cavity Imaging Using Graph Cuts

T. Mashita, Jun Usam, Hironori Shigeta, Yoshihiro Kuroda, J. Kikuta, S. Seno, M. Ishii, H. Matsuda, H. Takemura
{"title":"A Segmentation Method for Bone Marrow Cavity Imaging Using Graph Cuts","authors":"T. Mashita, Jun Usam, Hironori Shigeta, Yoshihiro Kuroda, J. Kikuta, S. Seno, M. Ishii, H. Matsuda, H. Takemura","doi":"10.1109/I3A.2014.21","DOIUrl":null,"url":null,"abstract":"The improvement of bioimaging technologies enables the observation of cellular dynamics invivo. Some new bioimaging technologies are expected to contribute to the discovery of new drugs and mechanisms of disease. To improve the contributions of bioimaging, it is required to extract a particular region or to detect a particular cell's motion within bioimages. Moreover, automatic extraction and detection with image processing is also required because the accurate and uniformed processing of a massive number of images manually is unrealistic. To help automate this process, we introduce a bone marrow cavity segmentation method for two-photon excitation microscopy images. Specialists of cellular dynamics define regions of bone marrow cavity by considering several criteria, including characteristics of intensity and blood flow. We take those criteria into our method as the energy function of graph cuts. Results of evaluations and comparison with normal graph cuts show that our proposed method that does not use hard constraints achieved a performance better than normal graph cuts with hard constraints.","PeriodicalId":103785,"journal":{"name":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I3A.2014.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The improvement of bioimaging technologies enables the observation of cellular dynamics invivo. Some new bioimaging technologies are expected to contribute to the discovery of new drugs and mechanisms of disease. To improve the contributions of bioimaging, it is required to extract a particular region or to detect a particular cell's motion within bioimages. Moreover, automatic extraction and detection with image processing is also required because the accurate and uniformed processing of a massive number of images manually is unrealistic. To help automate this process, we introduce a bone marrow cavity segmentation method for two-photon excitation microscopy images. Specialists of cellular dynamics define regions of bone marrow cavity by considering several criteria, including characteristics of intensity and blood flow. We take those criteria into our method as the energy function of graph cuts. Results of evaluations and comparison with normal graph cuts show that our proposed method that does not use hard constraints achieved a performance better than normal graph cuts with hard constraints.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于图切的骨髓腔图像分割方法
生物成像技术的进步使在体内观察细胞动力学成为可能。一些新的生物成像技术有望有助于发现新的药物和疾病的机制。为了提高生物成像的贡献,需要在生物图像中提取特定区域或检测特定细胞的运动。此外,由于人工对大量图像进行准确、均匀的处理是不现实的,因此还需要通过图像处理实现自动提取和检测。为了使这一过程自动化,我们引入了一种双光子激发显微镜图像的骨髓腔分割方法。细胞动力学专家通过考虑几个标准来定义骨髓腔的区域,包括强度和血流的特征。我们将这些准则作为图切的能量函数纳入我们的方法。结果表明,不使用硬约束的法向图切比使用硬约束的法向图切具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HEp-2 Cell Classification Using Multi-resolution Local Patterns and Ensemble SVMs A Segmentation Method for Bone Marrow Cavity Imaging Using Graph Cuts Class-Specific Hierarchical Classification of HEp-2 Cell Images: The Case of Two Classes HEp-2 Cell Image Classification with Convolutional Neural Networks A Bag of Words Based Approach for Classification of HEp-2 Cell Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1