S. Dasnurkar, A. Datta, M. Abu-Rahma, Hieu Nguyen, Martin Villafana, Hadi Rasouli, Sean Tamjidi, M. Cai, S. Sengupta, P. Chidambaram, Raghavan Thirumala, Nikhil Kulkarni, Prasanna Seeram, Prasad Bhadri, P. Patel, S. Yoon, E. Terzioglu
{"title":"Experiments and analysis to characterize logic state retention limitations in 28nm process node","authors":"S. Dasnurkar, A. Datta, M. Abu-Rahma, Hieu Nguyen, Martin Villafana, Hadi Rasouli, Sean Tamjidi, M. Cai, S. Sengupta, P. Chidambaram, Raghavan Thirumala, Nikhil Kulkarni, Prasanna Seeram, Prasad Bhadri, P. Patel, S. Yoon, E. Terzioglu","doi":"10.1109/VTS.2013.6548879","DOIUrl":null,"url":null,"abstract":"Mobile devices spend most of the time in standby mode. Supported features and functionalities are increasing in each newer model. With the wide spread adaptation of multitasking in mobile devices, retaining current status and data for all active tasks is critical for user satisfaction. Extending battery life in portable mobile devices necessitates the use of minimum possible energy in standby mode while retaining present states for all active tasks. This paper for the first time, explains the low voltage data-retention failure mechanism in flops. It analyzes the impact of design and process parameters on the data retention failure. Statistical nature of data retention failure is established and validated with extensive Monte-Carlo simulations across various process corners. Finally, silicon measurement from several 28nm industrial mobile chips is presented showing good correlation of retention failure prediction from simulation.","PeriodicalId":138435,"journal":{"name":"2013 IEEE 31st VLSI Test Symposium (VTS)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 31st VLSI Test Symposium (VTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTS.2013.6548879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Mobile devices spend most of the time in standby mode. Supported features and functionalities are increasing in each newer model. With the wide spread adaptation of multitasking in mobile devices, retaining current status and data for all active tasks is critical for user satisfaction. Extending battery life in portable mobile devices necessitates the use of minimum possible energy in standby mode while retaining present states for all active tasks. This paper for the first time, explains the low voltage data-retention failure mechanism in flops. It analyzes the impact of design and process parameters on the data retention failure. Statistical nature of data retention failure is established and validated with extensive Monte-Carlo simulations across various process corners. Finally, silicon measurement from several 28nm industrial mobile chips is presented showing good correlation of retention failure prediction from simulation.