Green Water Flow on a Fixed Model Structure in a Large Wave Basin Under Random Waves

Wei-Liang Chuang, Kuang‐An Chang, R. Mercier
{"title":"Green Water Flow on a Fixed Model Structure in a Large Wave Basin Under Random Waves","authors":"Wei-Liang Chuang, Kuang‐An Chang, R. Mercier","doi":"10.1115/OMAE2018-77184","DOIUrl":null,"url":null,"abstract":"Green water generated by random waves on a fixed, simplified geometry model structure was measured in a large wave basin. The velocity field of the flow that is aerated and highly turbulent was quantified using the bubble image velocimetry (BIV) technique. BIV utilizes shadow textures created by air-water interfaces as tracers in backlit images recorded by a high speed camera. The tracers in consecutive images are then cross-correlated to obtain the corresponding two-dimensional velocities. Random waves were generated by the JONSWAP spectrum with a significant wave height close to the freeboard. An image-based triggering method was employed to detect the green water events and trigger image acquisition. A total of 179 green water events were collected and categorized into three different types, based on the flow behavior. That includes the collapse of overtopping wave, fall of bulk water, and breaking wave crest. Statistical distributions of maximum green water velocities under random waves were developed, while the lognormal distribution was found as the best fit. By modeling the green water as a dam break flow, the Ritter solution was found to be able to capture the horizontal velocity distribution for the random green water events. A prediction equation for the green water velocity distribution under random waves was also obtained.","PeriodicalId":124589,"journal":{"name":"Volume 7B: Ocean Engineering","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7B: Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2018-77184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Green water generated by random waves on a fixed, simplified geometry model structure was measured in a large wave basin. The velocity field of the flow that is aerated and highly turbulent was quantified using the bubble image velocimetry (BIV) technique. BIV utilizes shadow textures created by air-water interfaces as tracers in backlit images recorded by a high speed camera. The tracers in consecutive images are then cross-correlated to obtain the corresponding two-dimensional velocities. Random waves were generated by the JONSWAP spectrum with a significant wave height close to the freeboard. An image-based triggering method was employed to detect the green water events and trigger image acquisition. A total of 179 green water events were collected and categorized into three different types, based on the flow behavior. That includes the collapse of overtopping wave, fall of bulk water, and breaking wave crest. Statistical distributions of maximum green water velocities under random waves were developed, while the lognormal distribution was found as the best fit. By modeling the green water as a dam break flow, the Ritter solution was found to be able to capture the horizontal velocity distribution for the random green water events. A prediction equation for the green water velocity distribution under random waves was also obtained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机波作用下大波池中固定模式结构上的绿水流
在大波池中测量了随机波在固定的简化几何模型结构上产生的绿水。采用气泡成像测速(BIV)技术对加气高紊流的速度场进行了定量分析。BIV利用空气-水界面产生的阴影纹理作为高速相机记录的背光图像中的示踪剂。然后将连续图像中的示踪剂相互关联以获得相应的二维速度。JONSWAP谱产生的随机波在干舷附近有显著的波高。采用基于图像的触发方法检测绿水事件并触发图像采集。共收集了179个绿水事件,并根据流动行为将其分为三种不同的类型。这包括过顶浪的崩塌、大块水的下落和波峰破碎。建立了随机波作用下绿水最大流速的统计分布,发现对数正态分布是最合适的。通过将绿水模拟为溃坝流,发现Ritter解能够捕捉随机绿水事件的水平速度分布。得到了随机波作用下绿水流速分布的预测方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Method for Designing the Backbone for the Segmented Model of an Ultra-Large Container Carrier Development of a PID Control Strategy for a Compact Autonomous Underwater Vehicle Global Assessments of Surface Winds and Waves From an Ensemble Forecast System Using Satellite Data Towards the Development of an Ocean Engineering Library for OpenModelica An Experimental Investigation of the Trim Effect on the Behaviour of a Containership in Shallow Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1