Artificial Neural Network in the Control Loop of a Wheeled Robot

O. Glukhov, N. Masalkova, R. Kulikov, T. Brovko, D. Tsaregorodtsev
{"title":"Artificial Neural Network in the Control Loop of a Wheeled Robot","authors":"O. Glukhov, N. Masalkova, R. Kulikov, T. Brovko, D. Tsaregorodtsev","doi":"10.1109/REEPE51337.2021.9388047","DOIUrl":null,"url":null,"abstract":"This paper describes the creation of a tracking system represented by a wheeled robot following a target (for example, a human). An artificial neural network (ANN) is used in the control loop of the robot to determine the range and bearing of the target, which are the tracking parameters. The main focus of the work is to develop a computer model of ANN capable of calculating near-optimal estimates of tracking parameters. In this case, the root mean square error (RMSE) of tracking parameter estimates is used as the criterion of efficiency of ANN operation. As a result, for the best ANN model the RMSE for the range was 0.009 m, and for the bearing was 1.006 degrees.","PeriodicalId":272476,"journal":{"name":"2021 3rd International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE)","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 3rd International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/REEPE51337.2021.9388047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes the creation of a tracking system represented by a wheeled robot following a target (for example, a human). An artificial neural network (ANN) is used in the control loop of the robot to determine the range and bearing of the target, which are the tracking parameters. The main focus of the work is to develop a computer model of ANN capable of calculating near-optimal estimates of tracking parameters. In this case, the root mean square error (RMSE) of tracking parameter estimates is used as the criterion of efficiency of ANN operation. As a result, for the best ANN model the RMSE for the range was 0.009 m, and for the bearing was 1.006 degrees.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轮式机器人控制回路中的人工神经网络
本文描述了一个跟踪系统的创建,该系统由一个轮式机器人跟踪一个目标(例如,一个人)。机器人的控制回路采用人工神经网络(ANN)来确定目标的距离和方位,即跟踪参数。这项工作的主要重点是开发一个能够计算跟踪参数的近最优估计的人工神经网络的计算机模型。在这种情况下,使用跟踪参数估计的均方根误差(RMSE)作为人工神经网络运行效率的标准。结果,对于最佳的人工神经网络模型,范围的RMSE为0.009 m,轴承为1.006度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Neural Network in the Control Loop of a Wheeled Robot Impacts of COVID-19 on the Electrical Power Dynamics and Environment of Bangladesh Lightning Measurement in Sarawak, Malaysia: First Results Development of Approaches to Assessing the Actual Technical Condition of Steam Turbines Based on Reliability Indicators Energy efficient employment of Used Petroleum Products as fuel based on environmental norms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1