Amirkhosro Kazemi, Eduardo E. Castillo, O. Curet, R. Hortensius, Pothos Stamatios
{"title":"Volumetric Three-Componential Velocity Measurements (V3V) of Flow Structure Behind Mangrove-Root Type Models","authors":"Amirkhosro Kazemi, Eduardo E. Castillo, O. Curet, R. Hortensius, Pothos Stamatios","doi":"10.1115/fedsm2020-20461","DOIUrl":null,"url":null,"abstract":"\n Mangrove roots produce complex flow structure interactions with their environment, which affect the nutrient, habitat and aquatic animals. Analysis of the flow structure behind the roots extends to a broad range of mangrove-inspired applications that provides understanding into complex flows encountered in unidirectional riverine flows. In this work, we modeled the mangrove roots with a cluster of rigid circular cylinders to investigate the vortex structure downstream of the models. The vortex organization of the patch of cylinder wakes was studied experimentally by time-resolved volumetric three-componential volumetric velocimetry (V3V) at Reynolds numbers 1014 and 3549. The results show that the vortex structure in the 3-D flow field reveals a regular shedding at Re = 1014, forming von Kármán vortices dominating the 3D motion. The flow structure behind rigid patches is coherent and the streamwise velocity remains unchanged. The regime for a flexible patch at Re = 3549 produces an intricate pattern where the multiple counter-rotating vortexes distorted substantially and forming a chain of rhombus-like vortex cells in the near wake. The information for the 3D flow feature provides useful information to a robust structure for Seawall erosion.","PeriodicalId":103887,"journal":{"name":"Volume 1: Fluid Applications and Systems; Fluid Measurement and Instrumentation","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Fluid Applications and Systems; Fluid Measurement and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/fedsm2020-20461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Mangrove roots produce complex flow structure interactions with their environment, which affect the nutrient, habitat and aquatic animals. Analysis of the flow structure behind the roots extends to a broad range of mangrove-inspired applications that provides understanding into complex flows encountered in unidirectional riverine flows. In this work, we modeled the mangrove roots with a cluster of rigid circular cylinders to investigate the vortex structure downstream of the models. The vortex organization of the patch of cylinder wakes was studied experimentally by time-resolved volumetric three-componential volumetric velocimetry (V3V) at Reynolds numbers 1014 and 3549. The results show that the vortex structure in the 3-D flow field reveals a regular shedding at Re = 1014, forming von Kármán vortices dominating the 3D motion. The flow structure behind rigid patches is coherent and the streamwise velocity remains unchanged. The regime for a flexible patch at Re = 3549 produces an intricate pattern where the multiple counter-rotating vortexes distorted substantially and forming a chain of rhombus-like vortex cells in the near wake. The information for the 3D flow feature provides useful information to a robust structure for Seawall erosion.