{"title":"Finite element based design optimization of magnetic structures for roadway inductive power transfer systems","authors":"M. Moghaddami, Arash Anzalchi, A. Sarwat","doi":"10.1109/ITEC.2016.7520200","DOIUrl":null,"url":null,"abstract":"Design optimization of magnetic structures for roadway inductive power transfer (IPT) systems based on 2D finite element analysis (FEA) is proposed. The proposed method can be used to find the optimal structure for IPT systems based on prioritization of different objectives such as efficiency, cost, etc. A Multi-objective genetic algorithm (MOGA) coupled with 2D FEA is used for the co-optimization of primary and secondary magnetic structures. Also, Electromagnetic field (EMF) emissions of the pads are considered to meet human exposure regulations in compliance with standards as defined by International Commission on Non-Ionizing Radiation Protection (ICNIRP). A 1 kW roadway IPT system is investigated as the case study and the results of the optimization are presented using different objective functions.","PeriodicalId":280676,"journal":{"name":"2016 IEEE Transportation Electrification Conference and Expo (ITEC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Transportation Electrification Conference and Expo (ITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC.2016.7520200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Design optimization of magnetic structures for roadway inductive power transfer (IPT) systems based on 2D finite element analysis (FEA) is proposed. The proposed method can be used to find the optimal structure for IPT systems based on prioritization of different objectives such as efficiency, cost, etc. A Multi-objective genetic algorithm (MOGA) coupled with 2D FEA is used for the co-optimization of primary and secondary magnetic structures. Also, Electromagnetic field (EMF) emissions of the pads are considered to meet human exposure regulations in compliance with standards as defined by International Commission on Non-Ionizing Radiation Protection (ICNIRP). A 1 kW roadway IPT system is investigated as the case study and the results of the optimization are presented using different objective functions.