A neural network method to improve prediction of protein-protein interaction sites in heterocomplexes

P. Fariselli, A. Zauli, I. Rossi, M. Finelli, P. Martelli, R. Casadio
{"title":"A neural network method to improve prediction of protein-protein interaction sites in heterocomplexes","authors":"P. Fariselli, A. Zauli, I. Rossi, M. Finelli, P. Martelli, R. Casadio","doi":"10.1109/NNSP.2003.1318002","DOIUrl":null,"url":null,"abstract":"In this paper we describe an algorithm, based on neural networks that adds to the previously published results (ISPRED, www.biocomp.unibo.it) and increases the predictive performance of protein-protein interaction sites in protein structures. The goal is to reduce the number of spurious assignment and developing knowledge based computational approach to focus on clusters of predicted residues on the protein surface. The algorithm is based on neural networks and can be used to highlight putative interacting patches with high reliability, as indicated when tested on known complexes in the PDB. When a smoothing algorithm correlates the network outputs, the accuracy in identifying the interaction patches increases from 73% up 76%. The reliability of the prediction is also increased by the application the smoothing procedure.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper we describe an algorithm, based on neural networks that adds to the previously published results (ISPRED, www.biocomp.unibo.it) and increases the predictive performance of protein-protein interaction sites in protein structures. The goal is to reduce the number of spurious assignment and developing knowledge based computational approach to focus on clusters of predicted residues on the protein surface. The algorithm is based on neural networks and can be used to highlight putative interacting patches with high reliability, as indicated when tested on known complexes in the PDB. When a smoothing algorithm correlates the network outputs, the accuracy in identifying the interaction patches increases from 73% up 76%. The reliability of the prediction is also increased by the application the smoothing procedure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进异质复合物中蛋白质-蛋白质相互作用位点预测的神经网络方法
在本文中,我们描述了一种基于神经网络的算法,该算法增加了先前发表的结果(ISPRED, www.biocomp.unibo.it),并提高了蛋白质结构中蛋白质-蛋白质相互作用位点的预测性能。目标是减少虚假分配的数量,并开发基于知识的计算方法来关注蛋白质表面预测残基的簇。该算法基于神经网络,可用于突出具有高可靠性的假定相互作用斑块,如在PDB中已知复合物上测试时所示。当一个平滑算法将网络输出关联起来时,识别交互补丁的准确率从73%提高到76%。采用平滑处理,提高了预测的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational decomposition of molecular signatures based on blind source separation of non-negative dependent sources with NMF A neural network method to improve prediction of protein-protein interaction sites in heterocomplexes Neuro-variational inversion of ocean color imagery Correlation-based feature detection using pulsed neural networks Computed simultaneous imaging of multiple biomarkers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1