Computed simultaneous imaging of multiple biomarkers

Y. Wang, J. Xuan, R. Srikanchana, Junying Zhang, Z. Szabo, Z. Bhujwalla, P. Choyke, King C. Li
{"title":"Computed simultaneous imaging of multiple biomarkers","authors":"Y. Wang, J. Xuan, R. Srikanchana, Junying Zhang, Z. Szabo, Z. Bhujwalla, P. Choyke, King C. Li","doi":"10.1109/NNSP.2003.1318026","DOIUrl":null,"url":null,"abstract":"Functional-molecular imaging techniques promise powerful tools for the visualization and elucidation of important disease-causing physiologic-molecular processes in living tissue. Most applications aim to find temporal-spatial patterns associated with different disease stages. When multiple agents are used, imagery signals often represent a composite of more than one distinct source due to functional-molecular biomarker heterogeneity, independent of spatial resolution. We therefore introduce a hybrid decomposition algorithm, which allows for a computed simultaneous imaging of multiple biomarkers. The method is based on a combination of time-activity curve clustering, pixel subset selection, and independent component analysis. We demonstrate the principle of the approach on an image data set, and we then apply the method to the tumor vascular characterization using dynamic contrast-enhanced magnetic resonance imaging and brain neuro-transporter imaging using dynamic positron emission tomography.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Functional-molecular imaging techniques promise powerful tools for the visualization and elucidation of important disease-causing physiologic-molecular processes in living tissue. Most applications aim to find temporal-spatial patterns associated with different disease stages. When multiple agents are used, imagery signals often represent a composite of more than one distinct source due to functional-molecular biomarker heterogeneity, independent of spatial resolution. We therefore introduce a hybrid decomposition algorithm, which allows for a computed simultaneous imaging of multiple biomarkers. The method is based on a combination of time-activity curve clustering, pixel subset selection, and independent component analysis. We demonstrate the principle of the approach on an image data set, and we then apply the method to the tumor vascular characterization using dynamic contrast-enhanced magnetic resonance imaging and brain neuro-transporter imaging using dynamic positron emission tomography.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多种生物标志物的计算机同步成像
功能分子成像技术为可视化和阐明活组织中重要的致病生理分子过程提供了强有力的工具。大多数应用旨在发现与不同疾病阶段相关的时空模式。当使用多个代理时,由于功能分子生物标志物的异质性,图像信号通常代表一个以上不同来源的复合,与空间分辨率无关。因此,我们引入了一种混合分解算法,该算法允许对多种生物标志物进行计算机同步成像。该方法基于时间-活动曲线聚类、像素子集选择和独立分量分析相结合的方法。我们在图像数据集上演示了该方法的原理,然后我们将该方法应用于使用动态对比增强磁共振成像和使用动态正电子发射断层扫描的脑神经转运体成像的肿瘤血管表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Computational decomposition of molecular signatures based on blind source separation of non-negative dependent sources with NMF A neural network method to improve prediction of protein-protein interaction sites in heterocomplexes Neuro-variational inversion of ocean color imagery Correlation-based feature detection using pulsed neural networks Computed simultaneous imaging of multiple biomarkers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1