Analysis of GPGPU-Based Brute-Force and Dictionary Attack on SHA-1 Password Hash

Laatansa, R. Saputra, B. Noranita
{"title":"Analysis of GPGPU-Based Brute-Force and Dictionary Attack on SHA-1 Password Hash","authors":"Laatansa, R. Saputra, B. Noranita","doi":"10.1109/ICICoS48119.2019.8982390","DOIUrl":null,"url":null,"abstract":"Password data in a system usually stored in hash. Various human-caused negligence and system vulnerability can make those data fall in the hand of those who isn't entitled to or even those who have malicious purpose. Attacks which could be done on the hashed password data using GPGPU-based machine are for example: brute-force, dictionary, mask-attack, and word-list. This research explains about effectivity of brute-force and dictionary attack which done on SHA-l hashed password using GPGPU-based machine. Result is showing that brute-force effectively crack more password which has lower set of character, with over 11% of 7 or less characters passwords vs mere 3 % in the dictionary attack counterpart. Whereas dictionary attack is more effective on cracking password which has unsecure character pattern with 5,053 passwords vs 491 on best brute-force attack scenario. Usage of combined attack method (brute-force + dictionary) gives more balanced approach in terms of cracking whether the password is long or secure patterned string.","PeriodicalId":105407,"journal":{"name":"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Informatics and Computational Sciences (ICICoS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICoS48119.2019.8982390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Password data in a system usually stored in hash. Various human-caused negligence and system vulnerability can make those data fall in the hand of those who isn't entitled to or even those who have malicious purpose. Attacks which could be done on the hashed password data using GPGPU-based machine are for example: brute-force, dictionary, mask-attack, and word-list. This research explains about effectivity of brute-force and dictionary attack which done on SHA-l hashed password using GPGPU-based machine. Result is showing that brute-force effectively crack more password which has lower set of character, with over 11% of 7 or less characters passwords vs mere 3 % in the dictionary attack counterpart. Whereas dictionary attack is more effective on cracking password which has unsecure character pattern with 5,053 passwords vs 491 on best brute-force attack scenario. Usage of combined attack method (brute-force + dictionary) gives more balanced approach in terms of cracking whether the password is long or secure patterned string.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于gpgpu的SHA-1密码哈希暴力破解和字典攻击分析
系统中的密码数据通常以散列形式存储。各种人为的疏忽和系统漏洞可能使这些数据落入那些没有资格甚至有恶意目的的人手中。使用基于gpgpu的机器可以对散列密码数据进行攻击,例如:暴力破解、字典、掩码攻击和单词列表。本研究阐述了利用基于gpgpu的机器对sha - 1哈希密码进行暴力破解和字典攻击的有效性。结果表明,暴力破解有效地破解了更多具有较低字符集的密码,超过11%的7个或更少字符的密码,而字典攻击对手只有3%。而字典攻击在破解具有不安全字符模式的密码时更有效,有5053个密码,而最佳暴力攻击场景为491个。使用组合攻击方法(蛮力+字典)在破解密码是长字符串还是安全模式字符串方面提供了更平衡的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of GPGPU-Based Brute-Force and Dictionary Attack on SHA-1 Password Hash Ranking of Game Mechanics for Gamification in Mobile Payment Using AHP-TOPSIS: Uses and Gratification Perspective An Assesment of Knowledge Sharing System: SCeLE Universitas Indonesia Improved Line Operator for Retinal Blood Vessel Segmentation Classification of Abnormality in Chest X-Ray Images by Transfer Learning of CheXNet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1