High performance bulk planar 20nm CMOS technology for low power mobile applications

H. Shang, S. Jain, E. Josse, E. Alptekin, M. Nam, S. W. Kim, K. Cho, I. Kim, Y. Liu, X. Yang, X. Wu, J. Ciavatti, N. Kim, R. Vega, L. Kang, H. Meer, S. Samavedam, M. Celik, S. Soss, H. Utomo, R. Ramachandran, W. Lai, V. Sardesai, C. Tran, J. Y. Kim, Y. H. Park, W. Tan, T. Shimizu, R. Joy, J. Strane, K. Tabakman, F. Lalanne, P. Montanini, K. Babich, J. B. Kim, L. Economikos, W. Cote, C. Reddy, M. Belyansky, R. Arndt, U. Kwon, K. Wong, D. Koli, D. Levedakis, J. Lee, J. Muncy, S. Krishnan, D. Schepis, X. Chen, B. Kim, C. Tian, B. Linder, E. Cartier, V. Narayanan, G. Northrop, O. Menut, J. Meiring, A. Thomas, M. Aminpur, S. H. Park, K. Y. Lee, B. Y. Kim, S. Rhee, B. Hamieh, R. Srivastava, R. Koshy, C. Goldberg, M. Pallachalil, M. Chae, A. Ogino, T. Watanabe, M. Oh, H. Mallela, D. Codi, P. Malinge, M. Weybright, R. Mann, A. Mittal, M. Eller, S. Lian, Y. Li, R. Divakaruni, S. Bukofsky, J. Kim, J. Sudijono, W. Neumueller, F. Matsuoka, R. Sampson
{"title":"High performance bulk planar 20nm CMOS technology for low power mobile applications","authors":"H. Shang, S. Jain, E. Josse, E. Alptekin, M. Nam, S. W. Kim, K. Cho, I. Kim, Y. Liu, X. Yang, X. Wu, J. Ciavatti, N. Kim, R. Vega, L. Kang, H. Meer, S. Samavedam, M. Celik, S. Soss, H. Utomo, R. Ramachandran, W. Lai, V. Sardesai, C. Tran, J. Y. Kim, Y. H. Park, W. Tan, T. Shimizu, R. Joy, J. Strane, K. Tabakman, F. Lalanne, P. Montanini, K. Babich, J. B. Kim, L. Economikos, W. Cote, C. Reddy, M. Belyansky, R. Arndt, U. Kwon, K. Wong, D. Koli, D. Levedakis, J. Lee, J. Muncy, S. Krishnan, D. Schepis, X. Chen, B. Kim, C. Tian, B. Linder, E. Cartier, V. Narayanan, G. Northrop, O. Menut, J. Meiring, A. Thomas, M. Aminpur, S. H. Park, K. Y. Lee, B. Y. Kim, S. Rhee, B. Hamieh, R. Srivastava, R. Koshy, C. Goldberg, M. Pallachalil, M. Chae, A. Ogino, T. Watanabe, M. Oh, H. Mallela, D. Codi, P. Malinge, M. Weybright, R. Mann, A. Mittal, M. Eller, S. Lian, Y. Li, R. Divakaruni, S. Bukofsky, J. Kim, J. Sudijono, W. Neumueller, F. Matsuoka, R. Sampson","doi":"10.1109/VLSIT.2012.6242495","DOIUrl":null,"url":null,"abstract":"In this paper, we present a high performance planar 20nm CMOS bulk technology for low power mobile (LPM) computing applications featuring an advanced high-k metal gate (HKMG) process, strain engineering, 64nm metal pitch & ULK dielectrics. Compared with 28nm low power technology, it offers 0.55X density scaling and enables significant frequency improvement at lower standby power. Device drive current up to 2X 28nm at equivalent leakage is achieved through co-optimization of HKMG process and strain engineering. A fully functional, high-density (0.081um2 bit-cell) SRAM is reported with a corresponding Static Noise Margin (SNM) of 160mV at 0.9V. An advanced patterning and metallization scheme based on ULK dielectrics enables high density wiring with competitive R-C.","PeriodicalId":266298,"journal":{"name":"2012 Symposium on VLSI Technology (VLSIT)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Symposium on VLSI Technology (VLSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2012.6242495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

In this paper, we present a high performance planar 20nm CMOS bulk technology for low power mobile (LPM) computing applications featuring an advanced high-k metal gate (HKMG) process, strain engineering, 64nm metal pitch & ULK dielectrics. Compared with 28nm low power technology, it offers 0.55X density scaling and enables significant frequency improvement at lower standby power. Device drive current up to 2X 28nm at equivalent leakage is achieved through co-optimization of HKMG process and strain engineering. A fully functional, high-density (0.081um2 bit-cell) SRAM is reported with a corresponding Static Noise Margin (SNM) of 160mV at 0.9V. An advanced patterning and metallization scheme based on ULK dielectrics enables high density wiring with competitive R-C.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于低功耗移动应用的高性能体平面20nm CMOS技术
在本文中,我们提出了一种用于低功耗移动(LPM)计算应用的高性能平面20nm CMOS体技术,该技术具有先进的高k金属栅极(HKMG)工艺,应变工程,64nm金属间距和ULK电介质。与28nm低功耗技术相比,它提供了0.55倍的密度缩放,并在更低的待机功耗下实现了显著的频率提升。通过HKMG工艺和应变工程的共同优化,实现了等效泄漏下器件驱动电流高达2X 28nm。一种全功能、高密度(0.081um2位单元)SRAM在0.9V下具有160mV的静态噪声裕度(SNM)。基于ULK电介质的先进图像化和金属化方案使高密度布线具有竞争力的R-C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Varistor-type bidirectional switch (JMAX>107A/cm2, selectivity∼104) for 3D bipolar resistive memory arrays Segmented-channel Si1−xGex/Si pMOSFET for improved ION and reduced variability High performance bulk planar 20nm CMOS technology for low power mobile applications Conductive filament scaling of TaOx bipolar ReRAM for long retention with low current operation Strain-induced performance enhancement of tri-gate and omega-gate nanowire FETs scaled down to 10nm Width
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1