X. Hue, Faiza Baroudi, L. Bollinger, M. Szymanowski, Jean-Christophe Nanan
{"title":"12/25W wideband LDMOS Power Amplifier IC (3400–3800MHz) For 5G base station applications","authors":"X. Hue, Faiza Baroudi, L. Bollinger, M. Szymanowski, Jean-Christophe Nanan","doi":"10.23919/EUMIC.2017.8230717","DOIUrl":null,"url":null,"abstract":"This paper presents the design of a wideband 2 stage Power Amplifier IC using the latest LDMOS Technology. This IC, easily adaptable for 12W & 25W applications, can be used as a driver or as a Doherty PA. For driver applications, the Proof of Concept demonstrates very flat performances over 3200–4000 MHz with high Gain, good Linearity and high Efficiency performances in class AB. Linear Gain is better than 27 dB with P3dB=42.8 dBm and 45.5 dBm respectively for both versions. Drain Efficiency remains better than 54% at P3dB. In Doherty configuration, those ICs have confirmed their ability to be used with complex LTE signals. With symmetric ICs, good linearity performances can be achieved even when the part is driven with up to 200MHz wideband LTE signal. The asymmetric POC delivered a P3dB of 44.5 dBm over the 3400–3600 MHz band with at least 25 dB linear Gain. Driven with 3 carrier LTE signal (60MHz), drain Efficiency is better than 40% at 8dB OBO. With respect to the state of the art, to the best of our knowledge, it is the highest performance LDMOS PA IC which meets 5G requirements in 3.4–3.8GHz band. Those ICs demonstrated their applicability for 5G applications in the 3.4–3.8GHz band.","PeriodicalId":120932,"journal":{"name":"2017 12th European Microwave Integrated Circuits Conference (EuMIC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th European Microwave Integrated Circuits Conference (EuMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUMIC.2017.8230717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper presents the design of a wideband 2 stage Power Amplifier IC using the latest LDMOS Technology. This IC, easily adaptable for 12W & 25W applications, can be used as a driver or as a Doherty PA. For driver applications, the Proof of Concept demonstrates very flat performances over 3200–4000 MHz with high Gain, good Linearity and high Efficiency performances in class AB. Linear Gain is better than 27 dB with P3dB=42.8 dBm and 45.5 dBm respectively for both versions. Drain Efficiency remains better than 54% at P3dB. In Doherty configuration, those ICs have confirmed their ability to be used with complex LTE signals. With symmetric ICs, good linearity performances can be achieved even when the part is driven with up to 200MHz wideband LTE signal. The asymmetric POC delivered a P3dB of 44.5 dBm over the 3400–3600 MHz band with at least 25 dB linear Gain. Driven with 3 carrier LTE signal (60MHz), drain Efficiency is better than 40% at 8dB OBO. With respect to the state of the art, to the best of our knowledge, it is the highest performance LDMOS PA IC which meets 5G requirements in 3.4–3.8GHz band. Those ICs demonstrated their applicability for 5G applications in the 3.4–3.8GHz band.