{"title":"A novel model predictive control algorithm to suppress the zero-sequence circulating currents for parallel three-phase voltage source inverters","authors":"Zicheng Zhang, Alian Chen, Xiangyang Xing, Chenghui Zhang","doi":"10.1109/APEC.2016.7468365","DOIUrl":null,"url":null,"abstract":"The topology of parallel three-phase voltage source inverters (VSIs) has been widely utilized to raise system power rating, but zero-sequence circulating currents (ZSCCs) are generated by control effect and hardware parameter differences. ZSCCs could lead to current distortion and impact the system stability. The model predictive control (MPC) method has been applied to the inverters to get high robustness, fast dynamic response and low switching frequency. However, the MPC method is rarely used in parallel inverters because of the ZSCCs problem. This paper proposes an improved MPC algorithm for parallel system to track the reference currents as well as suppress the ZSCCs. The contribution of each space vector to ZSCCs is analyzed and the cost function is redesigned in the new method. The cost function will pick out the optimal vectors to guarantee the control requirements. Experimental results verified that the improved algorithm is effective and performs well in both current tracking and ZSCCs suppression.","PeriodicalId":143091,"journal":{"name":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2016.7468365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
The topology of parallel three-phase voltage source inverters (VSIs) has been widely utilized to raise system power rating, but zero-sequence circulating currents (ZSCCs) are generated by control effect and hardware parameter differences. ZSCCs could lead to current distortion and impact the system stability. The model predictive control (MPC) method has been applied to the inverters to get high robustness, fast dynamic response and low switching frequency. However, the MPC method is rarely used in parallel inverters because of the ZSCCs problem. This paper proposes an improved MPC algorithm for parallel system to track the reference currents as well as suppress the ZSCCs. The contribution of each space vector to ZSCCs is analyzed and the cost function is redesigned in the new method. The cost function will pick out the optimal vectors to guarantee the control requirements. Experimental results verified that the improved algorithm is effective and performs well in both current tracking and ZSCCs suppression.