They are not all alike: answering different spatial questions requires different grounding strategies

Alberto Testoni, Claudio Greco, Tobias Bianchi, Mauricio Mazuecos, Agata Marcante, Luciana Benotti, R. Bernardi
{"title":"They are not all alike: answering different spatial questions requires different grounding strategies","authors":"Alberto Testoni, Claudio Greco, Tobias Bianchi, Mauricio Mazuecos, Agata Marcante, Luciana Benotti, R. Bernardi","doi":"10.18653/v1/2020.splu-1.4","DOIUrl":null,"url":null,"abstract":"In this paper, we study the grounding skills required to answer spatial questions asked by humans while playing the GuessWhat?! game. We propose a classification for spatial questions dividing them into absolute, relational, and group questions. We build a new answerer model based on the LXMERT multimodal transformer and we compare a baseline with and without visual features of the scene. We are interested in studying how the attention mechanisms of LXMERT are used to answer spatial questions since they require putting attention on more than one region simultaneously and spotting the relation holding among them. We show that our proposed model outperforms the baseline by a large extent (9.70% on spatial questions and 6.27% overall). By analyzing LXMERT errors and its attention mechanisms, we find that our classification helps to gain a better understanding of the skills required to answer different spatial questions.","PeriodicalId":272497,"journal":{"name":"Proceedings of the Third International Workshop on Spatial Language Understanding","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third International Workshop on Spatial Language Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.splu-1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we study the grounding skills required to answer spatial questions asked by humans while playing the GuessWhat?! game. We propose a classification for spatial questions dividing them into absolute, relational, and group questions. We build a new answerer model based on the LXMERT multimodal transformer and we compare a baseline with and without visual features of the scene. We are interested in studying how the attention mechanisms of LXMERT are used to answer spatial questions since they require putting attention on more than one region simultaneously and spotting the relation holding among them. We show that our proposed model outperforms the baseline by a large extent (9.70% on spatial questions and 6.27% overall). By analyzing LXMERT errors and its attention mechanisms, we find that our classification helps to gain a better understanding of the skills required to answer different spatial questions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
它们并不都是一样的:回答不同的空间问题需要不同的接地策略
在本文中,我们研究了在玩《GuessWhat?!》时回答人类提出的空间问题所需的基础技能。游戏。我们提出了空间问题的分类,将它们分为绝对问题、关系问题和群体问题。我们基于LXMERT多模态变压器建立了一个新的应答器模型,并比较了有和没有场景视觉特征的基线。我们感兴趣的是研究LXMERT的注意机制是如何被用来回答空间问题的,因为它们需要同时把注意力放在多个区域上,并发现它们之间的关系。我们表明,我们提出的模型在很大程度上优于基线(在空间问题上为9.70%,在总体上为6.27%)。通过分析LXMERT错误及其注意机制,我们发现我们的分类有助于更好地理解回答不同空间问题所需的技能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
They are not all alike: answering different spatial questions requires different grounding strategies A Cognitively Motivated Approach to Spatial Information Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1