A Cognitively Motivated Approach to Spatial Information Extraction

Chao Xu, Emmanuelle-Anna Dietz Saldanha, Dagmar Gromann, Beihai Zhou
{"title":"A Cognitively Motivated Approach to Spatial Information Extraction","authors":"Chao Xu, Emmanuelle-Anna Dietz Saldanha, Dagmar Gromann, Beihai Zhou","doi":"10.18653/v1/2020.splu-1.3","DOIUrl":null,"url":null,"abstract":"Automatic extraction of spatial information from natural language can boost human-centered applications that rely on spatial dynamics. The field of cognitive linguistics has provided theories and cognitive models to address this task. Yet, existing solutions tend to focus on specific word classes, subject areas, or machine learning techniques that cannot provide cognitively plausible explanations for their decisions. We propose an automated spatial semantic analysis (ASSA) framework building on grammar and cognitive linguistic theories to identify spatial entities and relations, bringing together methods of spatial information extraction and cognitive frameworks on spatial language. The proposed rule-based and explainable approach contributes constructions and preposition schemas and outperforms previous solutions on the CLEF-2017 standard dataset.","PeriodicalId":272497,"journal":{"name":"Proceedings of the Third International Workshop on Spatial Language Understanding","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third International Workshop on Spatial Language Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.splu-1.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Automatic extraction of spatial information from natural language can boost human-centered applications that rely on spatial dynamics. The field of cognitive linguistics has provided theories and cognitive models to address this task. Yet, existing solutions tend to focus on specific word classes, subject areas, or machine learning techniques that cannot provide cognitively plausible explanations for their decisions. We propose an automated spatial semantic analysis (ASSA) framework building on grammar and cognitive linguistic theories to identify spatial entities and relations, bringing together methods of spatial information extraction and cognitive frameworks on spatial language. The proposed rule-based and explainable approach contributes constructions and preposition schemas and outperforms previous solutions on the CLEF-2017 standard dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间信息提取的认知动机方法
从自然语言中自动提取空间信息可以促进依赖于空间动态的以人为中心的应用。认知语言学领域为解决这一问题提供了理论和认知模型。然而,现有的解决方案往往侧重于特定的词类、主题领域或机器学习技术,这些技术无法为其决策提供认知上合理的解释。本文提出了一个基于语法和认知语言学理论的自动空间语义分析(ASSA)框架,将空间信息提取方法和空间语言认知框架相结合,用于识别空间实体和空间关系。提出的基于规则和可解释的方法提供了结构和介词模式,并且在CLEF-2017标准数据集上优于先前的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
They are not all alike: answering different spatial questions requires different grounding strategies A Cognitively Motivated Approach to Spatial Information Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1